Ashina M, Ropper AH (2020) Migraine. N Engl J Med 383(19):1866–1876. https://doi.org/10.1056/NEJMra1915327
Article
CAS
PubMed
Google Scholar
Moskowitz MA (1984) The neurobiology of vascular head pain. Ann Neurol 16(2):157–168. https://doi.org/10.1002/ana.410160202
Article
CAS
PubMed
Google Scholar
Ashina M, Hansen JM, Do TP, Melo-Carrillo A, Burstein R, Moskowitz MA (2019) Migraine and the trigeminovascular system—40 years and counting. Lancet Neurol 18(8):795–804. https://doi.org/10.1016/s1474-4422(19)30185-1
Article
PubMed
PubMed Central
Google Scholar
Ashina M, Hansen JM, BO AD, Olesen J. (2017) Human models of migraine - short-term pain for long-term gain. Nat Rev Neurol 13(12):713–724. https://doi.org/10.1038/nrneurol.2017.137
Article
PubMed
Google Scholar
Banks WA (2016) From blood-brain barrier to blood-brain interface: new opportunities for CNS drug delivery. Nat Rev Drug Discov 15(4):275–292. https://doi.org/10.1038/nrd.2015.21
Article
CAS
PubMed
Google Scholar
Saunders NR, Dziegielewska KM, Møllgård K, Habgood MD (2018) Physiology and molecular biology of barrier mechanisms in the fetal and neonatal brain. J Physiol 596(23):5723–5756. https://doi.org/10.1113/JP275376
Article
CAS
PubMed
PubMed Central
Google Scholar
Kutuzov N, Flyvbjerg H, Lauritzen M (2018) Contributions of the glycocalyx, endothelium, and extravascular compartment to the blood–brain barrier. Proc Natl Acad Sci U S A 115(40):E9429–E9438. https://doi.org/10.1073/pnas.1802155115
Article
CAS
PubMed
PubMed Central
Google Scholar
Ermisch A, Brust P, Kretzschmar R, Rühle HJ (1993) Peptides and blood-brain barrier transport. Physiol Rev 73(3):489–527. https://doi.org/10.1152/physrev.1993.73.3.489
Article
CAS
PubMed
Google Scholar
Harper AM, MacKenzie ET, McCulloch J, Pickard JD (1977) Migraine and the blood-brain barrier. Lancet. 1(8020):1034–1036. https://doi.org/10.1016/s0140-6736(77)91262-4
Article
CAS
PubMed
Google Scholar
Amin FM, Hougaard A, Cramer SP, Christensen CE, Wolfram F, Larsson HBW, Ashina M (2017) Intact blood-brain barrier during spontaneous attacks of migraine without aura: a 3T DCE-MRI study. Eur J Neurol 24(9):1116–1124. https://doi.org/10.1111/ene.13341
Article
CAS
PubMed
Google Scholar
Hougaard A, Amin FM, Christensen CE, Younis S, Wolfram F, Cramer SP, Larsson HBW, Ashina M (2017) Increased brainstem perfusion, but no blood-brain barrier disruption, during attacks of migraine with aura. Brain. 140(6):1633–1642. https://doi.org/10.1093/brain/awx089
Article
PubMed
Google Scholar
Kim YS, Kim M, Choi SH, You SH, Yoo RE, Kang KM, Yun TJ, Lee ST, Moon J, Shin YW (2019) Altered vascular permeability in migraine-associated brain regions: evaluation with dynamic contrastenhanced MRI. Radiology. 292(3):713–720. https://doi.org/10.1148/radiol.2019182566
Article
PubMed
Google Scholar
Schankin CJ, Maniyar FH, Seo Y, Kori S, Eller M, Chou DE, Blecha J, Murphy ST, Hawkins RA, Sprenger T, VanBrocklin HF, Goadsby PJ (2016) Ictal lack of binding to brain parenchyma suggests integrity of the blood-brain barrier for 11C-dihydroergotamine during glyceryl trinitrate-induced migraine. Brain. 139(Pt 7):1994–2001. https://doi.org/10.1093/brain/aww096
Article
PubMed
PubMed Central
Google Scholar
Leira R, Sobrino T, Rodríguez-Yáñez M, Blanco M, Arias S, Castillo J (2007) MMP-9 immunoreactivity in acute migraine. Headache. 47(5):698–702. https://doi.org/10.1111/j.1526-4610.2006.00641.x
Article
PubMed
Google Scholar
Imamura K, Takeshima T, Fusayasu E, Nakashima K (2008) Increased plasma matrix metalloproteinase-9 levels in migraineurs. Headache. 48(1):135–139. https://doi.org/10.1111/j.1526-4610.2007.00958.x
Article
PubMed
Google Scholar
Thomsen LL, Kruuse C, Iversen HK, Olesen J (1994) A nitric oxide donor (nitroglycerin) triggers genuine migraine attacks. Eur J Neurol 1(1):73–80. https://doi.org/10.1111/j.1468-1331.1994.tb00053.x
Article
CAS
PubMed
Google Scholar
Rosenberg GA, Cunningham LA, Wallace J, Alexander S, Estrada EY, Grossetete M, Razhagi A, Miller K, Gearing A (2001) Immunohistochemistry of matrix metalloproteinases in reperfusion injury to rat brain: activation of MMP-9 linked to stromelysin-1 and microglia in cell cultures. Brain Res 893(1–2):104–112. https://doi.org/10.1016/S0006-8993(00)03294-7
Article
CAS
PubMed
Google Scholar
Gursoy-Ozdemir Y, Qiu J, Matsuoka N, Bolay H, Bermpohl D, Jin H, Wang X, Rosenberg GA, Lo EH, Moskowitz MA (2004) Cortical spreading depression activates and upregulates MMP-9. J Clin Invest 113(10):1447–1455. https://doi.org/10.1172/jci21227
Article
CAS
PubMed
PubMed Central
Google Scholar
Martins-Oliveira A, Speciali JG, Dach F, Marcaccini AM, Gonçalves FM, Gerlach RF, Tanus-Santos JE (2009) Different circulating metalloproteinases profiles in women with migraine with and without aura. Clin Chim Acta 408(1–2):60–64. https://doi.org/10.1016/j.cca.2009.07.008
Article
CAS
PubMed
Google Scholar
Ashina M, Tvedskov JF, Lipka K, Bilello J, Penkowa M, Olesen J (2010) Matrix metalloproteinases during and outside of migraine attacks without aura. Cephalalgia. 30(3):303–310. https://doi.org/10.1111/j.1468-2982.2009.01954.x
Article
CAS
PubMed
Google Scholar
Penkowa M, Florit S, Giralt M, Quintana A, Molinero A, Carrasco J, Hidalgo J (2005) Metallothionein reduces central nervous system inflammation, neurodegeneration, and cell death following kainic acid-induced epileptic seizures. J Neurosci Res 79(4):522–534. https://doi.org/10.1002/jnr.20387
Article
CAS
PubMed
Google Scholar
Li M, Yang G, Xie B, Babu K, Huang C (2014) Changes in matrix metalloproteinase-9 levels during progression of atrial fibrillation. J Int Med Res 42(1):224–230. https://doi.org/10.1177/0300060513488514
Article
CAS
PubMed
Google Scholar
Gruber BL, Sorbi D, French DL, Marchese MJ, Nuovo GJ, Kew RR, Arbeit LA (1996) Markedly elevated serum MMP-9 (gelatinase B) levels in rheumatoid arthritis: a potentially useful laboratory marker. Clin Immunol Immunopathol 78(2):161–171. https://doi.org/10.1006/clin.1996.0025
Article
CAS
PubMed
Google Scholar
Lauritzen M (1994) Pathophysiology of the migraine aura: the spreading depression theory. Brain. 117(1):199–210. https://doi.org/10.1093/brain/117.1.199
Article
PubMed
Google Scholar
Karatas H, Erdener SE, Gursoy-Ozdemir Y et al (2013) Spreading depression triggers headache by activating neuronal Panx1 channels. Science 339(6123):1092–1095. https://doi.org/10.1126/science.1231897
Article
CAS
PubMed
Google Scholar
Zhang XC, Levy D, Noseda R, Kainz V, Jakubowski M, Burstein R (2010) Activation of meningeal nociceptors by cortical spreading depression: implications for migraine with aura. J Neurosci 30(26):8807–8814. https://doi.org/10.1523/JNEUROSCI.0511-10.2010
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang XC, Levy D, Kainz V, Noseda R, Jakubowski M, Burstein R (2011) Activation of central TGV neurons by CSD. Ann Neurol 69(5):855–865. https://doi.org/10.1002/ana.22329.Activation
Article
PubMed
PubMed Central
Google Scholar
Hadjikhani N, Albrecht DS, Mainero C, Ichijo E, Ward N, Granziera C, Zürcher NR, Akeju O, Bonnier G, Price J, Hooker JM, Napadow V, Nahrendorf M, Loggia ML, Moskowitz MA (2020) Extra-axial inflammatory signal in Parameninges in migraine with visual Aura. Ann Neurol 87(6):939–949. https://doi.org/10.1002/ana.25731
Article
PubMed
PubMed Central
Google Scholar
Liktor-Busa E, Blawn KT, Kellohen KL et al (2020) Functional NHE1 expression is critical to blood brain barrier integrity and sumatriptan blood to brain uptake. PLoS One 15(5):e0227463. https://doi.org/10.1371/journal.pone.0227463
Article
CAS
PubMed
PubMed Central
Google Scholar
Ghaffari H, Grant SC, Petzold LR, Harrington MG (2020) Regulation of CSF and brain tissue sodium levels by the blood-CSF and blood-brain barriers during migraine. Front Comput Neurosci 14:4. https://doi.org/10.3389/FNCOM.2020.00004
Article
PubMed
PubMed Central
Google Scholar
Ashina M, Terwindt GM, Al-Karagholi MA-M et al (2021) Migraine: disease characterisation, biomarkers, and precision medicine. Lancet 397(10283):1496–1504. https://doi.org/10.1016/S0140-6736(20)32162-0
Article
CAS
PubMed
Google Scholar
Pellesi L, Al-Karagholi MA-M et al (2021) Effect of Vasoactive Intestinal Polypeptide on Development of Migraine Headaches A Randomized Clinical Trial. JAMA Netw Open 4(8):2118543. https://doi.org/10.1001/jamanetworkopen.2021.18543
Article
Google Scholar
Hendrikse ER, Bower RL, Hay DL, Walker CS (2019) Molecular studies of CGRP and the CGRP family of peptides in the central nervous system. Cephalalgia. 39(3):403–419. https://doi.org/10.1177/0333102418765787
Article
PubMed
Google Scholar
Sundrum T, Walker CS (2017) Pituitary adenylate cyclase-activating polypeptide receptors in the trigeminovascular system: Implications for migraine. Br J Pharmacol 175(21):4109–4120
Article
Google Scholar
Edvinsson L, Nilsson E, Jansen-Olesen I (2007) Inhibitory effect of BIBN4096BS, CGRP 8-37, a CGRP antibody and an RNA-Spiegelmer on CGRP induced vasodilatation in the perfused and non-perfused rat middle cerebral artery. Br J Pharmacol 150(5):633–640. https://doi.org/10.1038/sj.bjp.0707134
Article
CAS
PubMed
PubMed Central
Google Scholar
Lassen LH, Jacobsen VB, Haderslev PA, Sperling B, Iversen HK, Olesen J, Tfelt-Hansen P (2008) Involvement of calcitonin gene-related peptide in migraine: regional cerebral blood flow and blood flow velocity in migraine patients. J Headache Pain. 9(3):151–157. https://doi.org/10.1007/s10194-008-0036-8
Article
CAS
PubMed
PubMed Central
Google Scholar
Asghar MS, Hansen AE, Kapijimpanga T, van der Geest RJ, van der Koning P, Larsson HBW, Olesen J, Ashina M (2010) Dilation by CGRP of middle meningeal artery and reversal by sumatriptan in normal volunteers. Neurology. 75(17):1520–1526. https://doi.org/10.1212/WNL.0b013e3181f9626a
Article
CAS
PubMed
Google Scholar
Ghanizada H, Al-Mahdi Al-Karagholi M, Arngrim N et al (2021) Effect of Adrenomedullin on migraine-like attacks in patients with migraine. Neurology. 96(20):e2488–e2499. https://doi.org/10.1212/wnl.0000000000011930
Article
PubMed
Google Scholar
Petersen KA, Birk S, Kitamura K, Olesen J (2009) Effect of adrenomedullin on the cerebral circulation: relevance to primary headache disorders. Cephalalgia. 29(1):23–30. https://doi.org/10.1111/j.1468-2982.2008.01695.x
Article
CAS
PubMed
Google Scholar
Banks WA, Kastin AJ, Maness LM, Huang W, Jaspan JB (1995) Permeability of the blood-brain barrier to amylin. Life Sci 57(22):1993–2001. https://doi.org/10.1016/0024-3205(95)02197-Q
Article
CAS
PubMed
Google Scholar
Dogrukol-Ak D, Banks WA, Tuncel N, Tuncel M (2003) Passage of vasoactive intestinal peptide across the blood-brain barrier. Peptides. 24(3):437–444. https://doi.org/10.1016/S0196-9781(03)00059-7
Article
CAS
PubMed
Google Scholar
Ghanizada H, Al-Karagholi MAM, Walker CS et al (2021) Amylin analog Pramlintide induces migraine-like attacks in patients. Ann Neurol 89(6):1157–1171. https://doi.org/10.1002/ana.26072
Article
CAS
PubMed
Google Scholar
Banks WA, Kastin AJ, Komaki G, Arimura A (1993) Passage of pituitary adenylate cyclase activating polypeptide1-27 and pituitary adenylate cyclase activating polypeptide1-38 across the blood- brain barrier. J Pharmacol Exp Ther 267(2):690–696
CAS
PubMed
Google Scholar
Ghanizada H, Al-Karagholi MA, Arngrim N, Olesen J, Ashina M (2020) PACAP27 induces migraine-like attacks in migraine patients. Cephalalgia. 40(1):57–67. https://doi.org/10.1177/0333102419864507
Article
PubMed
Google Scholar
Erdling A, Sheykhzade M, Maddahi A, Bari F, Edvinsson L (2013) VIP/PACAP receptors in cerebral arteries of rat: Characterization, localization and relation to intracellular calcium. Neuropeptides 47(2):85–92. https://doi.org/10.1016/j.npep.2012.12.005
Article
CAS
PubMed
Google Scholar
Ghanizada H, Al-Karagholi MA, Arngrim N et al (2019) Effect of pituitary adenylate cyclase-activating polypeptide-27 on cerebral hemodynamics in healthy volunteers: a 3T MRI study. Peptides. 121:170134. https://doi.org/10.1016/j.peptides.2019.170134
Article
CAS
PubMed
Google Scholar
Schytz HW, Birk S, Wienecke T, Kruuse C, Olesen J, Ashina M (2009) PACAP38 induces migraine-like attacks in patients with migraine without aura. Brain. 132(1):16–25. https://doi.org/10.1093/brain/awn307
Article
PubMed
Google Scholar
Grände G, Labruijere S, Haanes KA, MaassenVanDenBrink A, Edvinsson L (2014) Comparison of the vasodilator responses of isolated human and rat middle meningeal arteries to migraine related compounds. J Headache Pain. 15(1):22. https://doi.org/10.1186/1129-2377-15-22
Article
PubMed
PubMed Central
Google Scholar
Amin FM, Hougaard A, Schytz HW, Asghar MS, Lundholm E, Parvaiz AI, de Koning PJH, Andersen MR, Larsson HBW, Fahrenkrug J, Olesen J, Ashina M (2014) Investigation of the pathophysiological mechanisms of migraine attacks induced by pituitary adenylate cyclase-activating polypeptide-38. Brain. 137(3):779–794. https://doi.org/10.1093/brain/awt369
Article
PubMed
Google Scholar
Dufes C, Olivier JC, Gaillard F, Gaillard A, Couet W, Muller JM (2003) Brain delivery of vasoactive intestinal peptide (VIP) following nasal administration to rats. Int J Pharm 255(1–2):87–97. https://doi.org/10.1016/S0378-5173(03)00039-5
Article
CAS
PubMed
Google Scholar
Hansen JM, Sitarz J, Birk S, Rahmann AM, Oturai PS, Fahrenkrug J, Olesen J, Ashina M (2006) Vasoactive intestinal polypeptide evokes only a minimal headache in healthy volunteers. Cephalalgia. 26(8):992–1003. https://doi.org/10.1111/j.1468-2982.2006.01149.x
Article
CAS
PubMed
Google Scholar
Rahmann A, Wienecke T, Hansen JM, Fahrenkrug J, Olesen J, Ashina M (2008) Vasoactive intestinal peptide causes marked cephalic vasodilation, but does not induce migraine. Cephalalgia. 28(3):226–236. https://doi.org/10.1111/j.1468-2982.2007.01497.x
Article
CAS
PubMed
Google Scholar
Pellesi L, Al-Karagholi MA, Chaudhry BA et al (2020) Two-hour infusion of vasoactive intestinal polypeptide induces delayed headache and extracranial vasodilation in healthy volunteers. Cephalalgia 40(11):1223. https://doi.org/10.1177/0333102420937655
Article
Google Scholar
Dahl A, Russell D, Nyberg-Hansen R, Rootwelt K (1989) Effect of nitroglycerin on cerebral circulation measured by transcranial Doppler and SPECT. Stroke. 20(12):1733–1736. https://doi.org/10.1161/01.str.20.12.1733
Article
CAS
PubMed
Google Scholar
Schulz JM, Al-Khazraji BK, Shoemaker JK (2018) Sodium nitroglycerin induces middle cerebral artery vasodilatation in young, healthy adults. Exp Physiol 103(8):1047–1055. https://doi.org/10.1113/EP087022
Article
CAS
PubMed
PubMed Central
Google Scholar
Schoonman GG, Van Der Grond J, Kortmann C, Van Der Geest RJ, Terwindt GM, Ferrari MD (2008) Migraine headache is not associated with cerebral or meningeal vasodilatation - a 3T magnetic resonance angiography study. Brain. 131(8):2192–2200. https://doi.org/10.1093/brain/awn094
Article
CAS
PubMed
Google Scholar
Gómez-Vallejo V, Ugarte A, García-Barroso C, Cuadrado-Tejedor M, Szczupak B, Dopeso-Reyes IG, Lanciego JL, García-Osta A, Llop J, Oyarzabal J, Franco R (2016) Pharmacokinetic investigation of sildenafil using positron emission tomography and determination of its effect on cerebrospinal fluid cGMP levels. J Neurochem 136(2):403–415. https://doi.org/10.1111/jnc.13454
Article
CAS
PubMed
Google Scholar
Kruuse C, Frandsen E, Schifter S, Thomsen LL, Birk S, Olesen J (2003) Plasma levels of cAMP, cGMP and CGRP in sildenafil-induced headache. Cephalalgia 24(7):547–553
Article
Google Scholar
Grände G, Nilsson E, Edvinsson L (2013) Comparison of responses to vasoactive drugs in human and rat cerebral arteries using myography and pressurized cerebral artery method. Cephalalgia. 33(3):152–159. https://doi.org/10.1177/0333102412468340
Article
PubMed
Google Scholar
Kruuse C, Gupta S, Nilsson E, Kruse L, Edvinsson L (2012) Differential vasoactive effects of sildenafil and tadalafil on cerebral arteries. Eur J Pharmacol 674(2–3):345–351. https://doi.org/10.1016/j.ejphar.2011.10.037
Article
CAS
PubMed
Google Scholar
Guo S, Olesen J, Ashina M (2014) Phosphodiesterase 3 inhibitor cilostazol induces migraine-like attacks via cyclic AMP increase. Brain. 137(11):2951–2959. https://doi.org/10.1093/brain/awu244
Article
PubMed
Google Scholar
Butt JH, Rostrup E, Hansen AS, Lambertsen KL, Kruuse C (2018) Induction of migraine-like headache, but not aura, by cilostazol in patients with migraine with aura. Brain. 141(10):2943–2951. https://doi.org/10.1093/brain/awy228
Article
PubMed
Google Scholar
Birk S, Kruuse C, Petersen KA, Jonassen O, Tfelt-Hansen P, Olesen J (2004) The phosphodiesterase 3 inhibitor cilostazol dilates large cerebral arteries in humans without affecting regional cerebral blood flow. J Cereb Blood Flow Metab 24(12):1352–1358. https://doi.org/10.1097/01.WCB.0000143536.22131.D7
Article
CAS
PubMed
Google Scholar
Khan S, Amin FM, Christensen CE, Ghanizada H, Younis S, Olinger ACR, de Koning PJH, Larsson HBW, Ashina M (2019) Meningeal contribution to migraine pain: a magnetic resonance angiography study. Brain. 142(1):93–102. https://doi.org/10.1093/brain/awy300
Article
PubMed
Google Scholar
Al-Karagholi MA, Hansen JM, Guo S, Olesen J, Ashina M (2019) Opening of ATP-sensitive potassium channels causes migraine attacks: a new target for the treatment of migraine. Brain. 142(9):2644–2654. https://doi.org/10.1093/brain/awz199
Article
PubMed
Google Scholar
Al-Karagholi MAM, Ghanizada H, Nielsen CAW et al (2020) Cerebrovascular effects of glibenclamide investigated using high-resolution magnetic resonance imaging in healthy volunteers. J Cereb Blood Flow Metab 41(6):1328–1337. https://doi.org/10.1177/0271678X20959294
Article
PubMed
PubMed Central
Google Scholar
Al-Karagholi MA, Ghanizada H, Waldorff Nielsen CA et al (2021) Opening of BKCa channels causes migraine attacks: a new downstream target for the treatment of migraine. Pain 162(10):2512–2520
CAS
PubMed
Google Scholar
Al-karagholi MA, Ghanizada H, Amalie C et al (2020) Opening of BK Ca channels alters cerebral hemodynamic and causes headache in healthy volunteers. Cephalalgia 40(11):1145–1154. https://doi.org/10.1177/0333102420940681
Article
PubMed
Google Scholar
Kastin AJ, Akerstrom V, Hackler L, Pan W (2001) Adrenomedullin and the blood-brain barrier. Horm Metab Res 33(1):19–25. https://doi.org/10.1055/s-2001-12621
Article
CAS
PubMed
Google Scholar
Banks WA, Kastin AJ (1998) Differential permeability of the blood-brain barrier to two pancreatic peptides: insulin and amylin. Peptides. 19(5):883–889. https://doi.org/10.1016/S0196-9781(98)00018-7
Article
CAS
PubMed
Google Scholar
Amin FM, Schytz HW (2018) Transport of the pituitary adenylate cyclase-activating polypeptide across the blood-brain barrier: implications for migraine. J Headache Pain. 19(1):35. https://doi.org/10.1186/s10194-018-0861-3
Article
CAS
PubMed
PubMed Central
Google Scholar
Birk S, Sitarz JT, Petersen KA, Oturai PS, Kruuse C, Fahrenkrug J, Olesen J (2007) The effect of intravenous PACAP38 on cerebral hemodynamics in healthy volunteers. Regul Pept 140(3):185–191. https://doi.org/10.1016/j.regpep.2006.12.010
Article
CAS
PubMed
Google Scholar
Amin FM, Asghar MS, Guo S, Hougaard A, Hansen AE, Schytz HW, van der Geest RJ, de Koning PJH, Larsson HBW, Olesen J, Ashina M (2012) Headache and prolonged dilatation of the middle meningeal artery by PACAP38 in healthy volunteers. Cephalalgia. 32(2):140–149. https://doi.org/10.1177/0333102411431333
Article
PubMed
Google Scholar
Asghar MS, Hansen AE, Larsson HBW, Olesen J, Ashina M (2012) Effect of CGRP and sumatriptan on the BOLD response in visual cortex. J Headache Pain 13(2):159–166. https://doi.org/10.1007/s10194-011-0415-4
Article
PubMed
PubMed Central
Google Scholar
de Vries T, Villalón CM, MaassenVanDenBrink A (2020) Pharmacological treatment of migraine: CGRP and 5-HT beyond the triptans. Pharmacol Ther 211:107528. https://doi.org/10.1016/j.pharmthera.2020.107528
Article
CAS
PubMed
Google Scholar
Hostetler ED, Joshi AD, Sanabria-Bohórquez S, Fan H, Zeng Z, Purcell M, Gantert L, Riffel K, Williams M, O’Malley S, Miller P, Selnick HG, Gallicchio SN, Bell IM, Salvatore CA, Kane SA, Li CC, Hargreaves RJ, de Groot T, Bormans G, van Hecken A, Derdelinckx I, de Hoon J, Reynders T, Declercq R, de Lepeleire I, Kennedy WP, Blanchard R, Marcantonio EE, Sur C, Cook JJ, van Laere K, Evelhoch JL (2013) In vivo quantification of calcitonin gene-related peptide receptor occupancy by telcagepant in rhesus monkey and human brain using the positron emission tomography tracer [11C]MK-4232. J Pharmacol Exp Ther 347(2):478–486. https://doi.org/10.1124/jpet.113.206458
Article
CAS
PubMed
Google Scholar
Christensen SL, Ernstsen C, Olesen J, Kristensen DM (2020) No central action of CGRP antagonising drugs in the GTN mouse model of migraine. Cephalalgia. 40(9):924–934. https://doi.org/10.1177/0333102420914913
Article
PubMed
Google Scholar
Noseda R, Schain AJ, Melo-Carrillo A, Tien J, Stratton J, Mai F, Strassman AM, Burstein R (2020) Fluorescently-labeled fremanezumab is distributed to sensory and autonomic ganglia and the dura but not to the brain of rats with uncompromised blood brain barrier. Cephalalgia. 40(3):229–240. https://doi.org/10.1177/0333102419896760
Article
PubMed
Google Scholar
Eigenbrodt AK, Ashina H, Khan S, Diener HC, Mitsikostas DD, Sinclair AJ, Pozo-Rosich P, Martelletti P, Ducros A, Lantéri-Minet M, Braschinsky M, del Rio MS, Daniel O, Özge A, Mammadbayli A, Arons M, Skorobogatykh K, Romanenko V, Terwindt GM, Paemeleire K, Sacco S, Reuter U, Lampl C, Schytz HW, Katsarava Z, Steiner TJ, Ashina M (2021) Diagnosis and management of migraine in ten steps. Nat Rev Neurol 17(8):501–514. https://doi.org/10.1038/S41582-021-00509-5
Article
PubMed
PubMed Central
Google Scholar
Pearlman EM, Wilbraham D, Dennehy EB et al (2020) Effects of lasmiditan on simulated driving performance: Results of two randomized, blinded, crossover studies with placebo and active controls. Hum Psychopharmacol 35(5):e2732. https://doi.org/10.1002/HUP.2732
Article
CAS
PubMed
PubMed Central
Google Scholar
Clemow DB, Johnson KW, Hochstetler HM et al (2020) Lasmiditan mechanism of action - review of a selective 5-HT 1F agonist. J Headache Pain 21(1):71. https://doi.org/10.1186/S10194-020-01132-3
Article
CAS
PubMed
PubMed Central
Google Scholar
Montagne A, Barnes SR, Sweeney MD, Halliday MR, Sagare AP, Zhao Z, Toga AW, Jacobs RE, Liu CY, Amezcua L, Harrington MG, Chui HC, Law M, Zlokovic BV (2015) Blood-brain barrier breakdown in the aging human Hippocampus. Neuron. 85(2):296–302. https://doi.org/10.1016/J.NEURON.2014.12.032
Article
CAS
PubMed
PubMed Central
Google Scholar
Nation DA, Sweeney MD, Montagne A, Sagare AP, D’Orazio LM, Pachicano M, Sepehrband F, Nelson AR, Buennagel DP, Harrington MG, Benzinger TLS, Fagan AM, Ringman JM, Schneider LS, Morris JC, Chui HC, Law M, Toga AW, Zlokovic BV (2019) Blood-brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat Med 25(2):270–276. https://doi.org/10.1038/S41591-018-0297-Y
Article
CAS
PubMed
PubMed Central
Google Scholar
Afridi SK, Kaube H, Goadsby PJ (2004) Glyceryl trinitrate triggers premonitory symptoms in migraineurs. Pain. 110(3):675–680. https://doi.org/10.1016/j.pain.2004.05.007
Article
CAS
PubMed
Google Scholar
Maniyar FH, Sprenger T, Monteith T, Schankin C, Goadsby PJ (2014) Brain activations in the premonitory phase of nitroglycerin-triggered migraine attacks. Brain. 137(Pt 1):232–241. https://doi.org/10.1093/brain/awt320
Article
PubMed
Google Scholar
Guo S, Vollesen ALH, Olesen J, Ashina M (2016) Premonitory and nonheadache symptoms induced by CGRP and PACAP38 in patients with migraine. Pain. 157(12):2773–2781. https://doi.org/10.1097/j.pain.0000000000000702
Article
CAS
PubMed
Google Scholar
Al-Karagholi MA-M, Ghanizada H, Nielsen CAW, Hougaard A, Ashina M (2021) Opening of ATP sensitive potassium channels causes migraine attacks with aura. Brain. 2021(8):2322–2332. https://doi.org/10.1093/brain/awab136
Article
Google Scholar
Oliver KR, Wainwright A, Edvinsson L, Pickard JD, Hill RG (2002) Immunohistochemical localization of calcitonin receptor-like receptor and receptor activity-modifying proteins in the human cerebral vasculature. J Cereb Blood Flow Metab 22(5):620–629. https://doi.org/10.1097/00004647-200205000-00014
Article
CAS
PubMed
Google Scholar
Lennerz JK, Rühle V, Ceppa EP, Neuhuber WL, Bunnett NW, Grady EF, Messlinger K (2008) Calcitonin receptor-like receptor (CLR), receptor activity-modifying protein 1 (RAMP1), and calcitonin gene-related peptide (CGRP) immunoreactivity in the rat trigeminovascular system: differences between peripheral and central CGRP receptor distribution. J Comp Neurol 507(3):1277–1299. https://doi.org/10.1002/cne.21607
Article
CAS
PubMed
Google Scholar
Edvinsson JCA, Warfvinge K, Krause DN, Blixt FW, Sheykhzade M, Edvinsson L, Haanes KA (2019) C-fibers may modulate adjacent Aδ-fibers through axon-axon CGRP signaling at nodes of Ranvier in the trigeminal system. J Headache Pain. 20(1):105. https://doi.org/10.1186/s10194-019-1055-3
Article
CAS
PubMed
PubMed Central
Google Scholar
Walker CS, Eftekhari S, Bower RL, Wilderman A, Insel PA, Edvinsson L, Waldvogel HJ, Jamaluddin MA, Russo AF, Hay DL (2015) A second trigeminal CGRP receptor: function and expression of the AMY<inf>1</inf> receptor. Ann Clin Transl Neurol 2(6):595–608. https://doi.org/10.1002/acn3.197
Article
CAS
PubMed
PubMed Central
Google Scholar
Tschopp FA, Henke H, Petermann JB, Tobler PH, Janzer R, Hokfelt T, Lundberg JM, Cuello C, Fischer JA (1985) Calcitonin gene-related peptide and its binding sites in the human central nervous system and pituitary. Proc Natl Acad Sci U S A 82(1):248–252. https://doi.org/10.1073/pnas.82.1.248
Article
CAS
PubMed
PubMed Central
Google Scholar
Stachniak TJE, Krukoff TL (2003) Receptor activity modifying protein 2 distribution in the rat central nervous system and regulation by changes in blood pressure. J Neuroendocrinol 15(9):840–850. https://doi.org/10.1046/j.1365-2826.2003.01064.x
Article
CAS
PubMed
Google Scholar
Hensley K, Pretorius J, Chan B (2018) PAC1 receptor mRNA and protein distribution in rat and human trigeminal and sphenopalatine ganglia, spinal trigeminal nucleus and in dura mater. Cephalalgia 39(7):1–14. https://doi.org/10.1177/0333102418821621
Article
Google Scholar
Jansen-Olesen I, Baun M, Amrutkar DV, Ramachandran R, Christophersen DV, Olesen J (2014) PACAP-38 but not VIP induces release of CGRP from trigeminal nucleus caudalis via a receptor distinct from the PAC1 receptor. Neuropeptides. 48(2):53–64. https://doi.org/10.1016/j.npep.2014.01.004
Article
CAS
PubMed
Google Scholar
Jolivel V, Basille M, Aubert N, de Jouffrey S, Ancian P, le Bigot JF, Noack P, Massonneau M, Fournier A, Vaudry H, Gonzalez BJ, Vaudry D (2009) Distribution and functional characterization of pituitary adenylate cyclase-activating polypeptide receptors in the brain of non-human primates. Neuroscience. 160(2):434–451. https://doi.org/10.1016/j.neuroscience.2009.02.028
Article
CAS
PubMed
Google Scholar
Joo KM, Chung YH, Kim MK, Nam RH, Lee BL, Lee KH, Cha CI (2004) Distribution of vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide receptors (VPAC1, VPAC2, and PAC1 receptor) in the rat brain. J Comp Neurol 476(4):388–413. https://doi.org/10.1002/cne.20231
Article
CAS
PubMed
Google Scholar
Ploug KB, Sørensen MA, Strøbech L, Klaerke DA, Hay-Schmidt A, Sheykhzade M, Olesen J, Jansen-Olesen I (2008) KATP channels in pig and human intracranial arteries. Eur J Pharmacol 601(1–3):43–49. https://doi.org/10.1016/j.ejphar.2008.10.041
Article
CAS
PubMed
Google Scholar
Ploug KB, Boni LJ, Baun M, Hay-Schmidt A, Olesen J, Jansen-Olesen I (2008) K ATP channel expression and pharmacological in vivo and in vitro studies of the K ATP channel blocker PNU-37883A in rat middle meningeal arteries. Br J Pharmacol 154(1):72–81. https://doi.org/10.1038/bjp.2008.86
Article
CAS
PubMed
PubMed Central
Google Scholar
Nui K, Saloman JL, Zhang Y, Ro JY (2011) Sex diffferences in the contribution of ATP-sensitive K+ channels in trigeminal ganglia under an acute muscle pain condition. Neuroscience 80:344–352. https://doi.org/10.1038/jid.2014.371
Article
CAS
Google Scholar
Ploug KB, Amrutkar DV, Baun M, Ramachandran R, Iversen A, Lund TM, Gupta S, Hay-Schmidt A, Olesen J, Jansen-Olesen I (2012) K ATP channel openers in the trigeminovascular system. Cephalalgia. 32(1):55–65. https://doi.org/10.1177/0333102411430266
Article
CAS
PubMed
Google Scholar
Dunn-Meynell AA, Rawson NE, Levin BE (1998) Distribution and phenotype of neurons containing the ATP-sensitive K+ channel in rat brain. Brain Res 814(1–2):41–54. https://doi.org/10.1016/S0006-8993(98)00956-1
Article
CAS
PubMed
Google Scholar
Sausbier U, Sausbier M, Sailer CA, Arntz C, Knaus HG, Neuhuber W, Ruth P (2006) Ca2+−activated K+ channels of the BK-type in the mouse brain. Histochem Cell Biol 125(6):725–741. https://doi.org/10.1007/s00418-005-0124-7
Article
CAS
PubMed
Google Scholar
Wulf-Johansson H, Amrutkar DV, Hay-Schmidt A, Poulsen AN, Klaerke DA, Olesen J, Jansen-Olesen I (2010) Localization of large conductance calcium-activated potassium channels and their effect on calcitonin gene-related peptide release in the rat trigemino-neuronal pathway. Neuroscience. 167(4):1091–1102. https://doi.org/10.1016/j.neuroscience.2010.02.063
Article
CAS
PubMed
Google Scholar
Poulsen AN, Wulf H, Hay-Schmidt A, Jansen-Olesen I, Olesen J, Klaerke DA (2009) Differential expression of BK channel isoforms and β-subunits in rat neuro-vascular tissues. Biochim Biophys Acta Biomembr 1788(2):380–389. https://doi.org/10.1016/j.bbamem.2008.10.001
Article
CAS
Google Scholar