Burgos-Vega C, Moy J, Dussor G (2015) Meningeal afferent signaling and the pathophysiology of migraine. Prog Mol Biol Transl Sci 131:537–564. doi:10.1016/bs.pmbts.2015.01.001
Article
PubMed
Google Scholar
Lukács M, Haanes KA, Majláth Z et al (2015) Dural administration of inflammatory soup or Complete Freund’s Adjuvant induces activation and inflammatory response in the rat trigeminal ganglion. J Headache Pain 16:564. doi:10.1186/s10194-015-0564-y
Article
PubMed
Google Scholar
Moskowitz MA (1984) The neurobiology of vascular head pain. Ann Neurol 16:157–168. doi:10.1002/ana.410160202
Article
CAS
PubMed
Google Scholar
Jancsó G, Kiraly E, Jancsó-Gábor A (1977) Pharmacologically induced selective degeneration of chemosensitive primary sensory neurones. Nature 270:741–743
Article
PubMed
Google Scholar
Jancsó N, Jancsó-Gábor A, Szolcsányi J (1967) Direct evidence for neurogenic inflammation and its prevention by denervation and by pretreatment with capsaicin. Br J Pharmacol Chemother 31:138–151
Article
PubMed
PubMed Central
Google Scholar
Katona M, Boros K, Sántha P et al (2004) Selective sensory denervation by capsaicin aggravates adriamycin-induced cardiomyopathy in rats. Naunyn Schmiedebergs Arch Pharmacol 370:436–443. doi:10.1007/s00210-004-0985-7
Article
CAS
PubMed
Google Scholar
Maggi CA, Patacchini R, Santicioli P et al (1989) The “efferent” function of capsaicin-sensitive nerves: ruthenium red discriminates between different mechanisms of activation. Eur J Pharmacol 170:167–177
Article
CAS
PubMed
Google Scholar
Sann H, Dux M, Schemann M, Jancsó G (1996) Neurogenic inflammation in the gastrointestinal tract of the rat. Neurosci Lett 219:147–150
Article
CAS
PubMed
Google Scholar
Dux M, Sántha P, Jancsó G (2003) Capsaicin-sensitive neurogenic sensory vasodilatation in the dura mater of the rat. J Physiol 552:859–867. doi:10.1113/jphysiol.2003.050633
Article
CAS
PubMed
PubMed Central
Google Scholar
Dux M, Rosta J, Pintér S et al (2007) Loss of capsaicin-induced meningeal neurogenic sensory vasodilatation in diabetic rats. Neuroscience 150:194–201. doi:10.1016/j.neuroscience.2007.09.001
Article
CAS
PubMed
Google Scholar
Dux M, Rosta J, Sántha P, Jancsó G (2009) Involvement of capsaicin-sensitive afferent nerves in the proteinase-activated receptor 2-mediated vasodilatation in the rat dura mater. Neuroscience 161:887–894. doi:10.1016/j.neuroscience.2009.04.010
Article
CAS
PubMed
Google Scholar
Caterina MJ, Schumacher MA, Tominaga M et al (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824. doi:10.1038/39807
Article
CAS
PubMed
Google Scholar
Julius D, Basbaum AI (2001) Molecular mechanisms of nociception. Nature 413:203–210. doi:10.1038/35093019
Article
CAS
PubMed
Google Scholar
Meents JE, Hoffmann J, Chaplan SR et al (2015) Two TRPV1 receptor antagonists are effective in two different experimental models of migraine. J Headache Pain 16:57. doi:10.1186/s10194-015-0539-z
Article
PubMed
PubMed Central
Google Scholar
Buzzi MG, Moskowitz MA (1992) The trigemino-vascular system and migraine. Pathol Biol (Paris) 40:313–317
CAS
Google Scholar
Evans MS, Cheng X, Jeffry JA et al (2012) Sumatriptan inhibits TRPV1 channels in trigeminal neurons. Headache 52:773–784. doi:10.1111/j.1526-4610.2011.02053.x
Article
PubMed
PubMed Central
Google Scholar
Meents JE, Neeb L, Reuter U (2010) TRPV1 in migraine pathophysiology. Trends Mol Med 16:153–159. doi:10.1016/j.molmed.2010.02.004
Article
CAS
PubMed
Google Scholar
Hoffmann J, Supronsinchai W, Andreou AP et al (2012) Olvanil acts on transient receptor potential vanilloid channel 1 and cannabinoid receptors to modulate neuronal transmission in the trigeminovascular system. Pain 153:2226–2232. doi:10.1016/j.pain.2012.07.006
Article
CAS
PubMed
Google Scholar
Dux M, Sántha P, Jancsó G (2012) The role of chemosensitive afferent nerves and TRP ion channels in the pathomechanism of headaches. Pflüg Arch Eur J Physiol 464:239–248. doi:10.1007/s00424-012-1142-7
Article
CAS
Google Scholar
Goadsby PJ, Edvinsson L, Ekman R (1990) Vasoactive peptide release in the extracerebral circulation of humans during migraine headache. Ann Neurol 28:183–187. doi:10.1002/ana.410280213
Article
CAS
PubMed
Google Scholar
Ho TW, Ferrari MD, Dodick DW et al (2008) Efficacy and tolerability of MK-0974 (telcagepant), a new oral antagonist of calcitonin gene-related peptide receptor, compared with zolmitriptan for acute migraine: a randomised, placebo-controlled, parallel-treatment trial. Lancet Lond Engl 372:2115–2123. doi:10.1016/S0140-6736(08)61626-8
Article
CAS
Google Scholar
Olesen J, Diener H-C, Husstedt IW et al (2004) Calcitonin gene-related peptide receptor antagonist BIBN 4096 BS for the acute treatment of migraine. N Engl J Med 350:1104–1110. doi:10.1056/NEJMoa030505
Article
CAS
PubMed
Google Scholar
Olesen J (1991) Clinical and pathophysiological observations in migraine and tension-type headache explained by integration of vascular, supraspinal and myofascial inputs. Pain 46:125–132
Article
CAS
PubMed
Google Scholar
Goadsby PJ (2005) Migraine, allodynia, sensitisation and all of that. Eur Neurol 53(Suppl 1):10–16. doi:10.1159/000085060
Article
PubMed
Google Scholar
Di Marzo V, Blumberg PM, Szallasi A (2002) Endovanilloid signaling in pain. Curr Opin Neurobiol 12:372–379
Article
PubMed
Google Scholar
Ralevic V (2003) Cannabinoid modulation of peripheral autonomic and sensory neurotransmission. Eur J Pharmacol 472:1–21
Article
CAS
PubMed
Google Scholar
Price TJ, Helesic G, Parghi D et al (2003) The neuronal distribution of cannabinoid receptor type 1 in the trigeminal ganglion of the rat. Neuroscience 120:155–162
Article
CAS
PubMed
PubMed Central
Google Scholar
Akerman S, Kaube H, Goadsby PJ (2004) Anandamide acts as a vasodilator of dural blood vessels in vivo by activating TRPV1 receptors. Br J Pharmacol 142:1354–1360. doi:10.1038/sj.bjp.0705896
Article
CAS
PubMed
PubMed Central
Google Scholar
Fischer MJM, Messlinger K (2007) Cannabinoid and vanilloid effects of R(+)-methanandamide in the hemisected meningeal preparation. Cephalalgia Int J Headache 27:422–428. doi:10.1111/j.1468-2982.2007.01312.x
Article
CAS
Google Scholar
Dinis P, Charrua A, Avelino A et al (2004) Anandamide-evoked activation of vanilloid receptor 1 contributes to the development of bladder hyperreflexia and nociceptive transmission to spinal dorsal horn neurons in cystitis. J Neurosci Off J Soc Neurosci 24:11253–11263. doi:10.1523/JNEUROSCI.2657-04.2004
Article
CAS
Google Scholar
Khasabova IA, Holman M, Morse T et al (2013) Increased anandamide uptake by sensory neurons contributes to hyperalgesia in a model of cancer pain. Neurobiol Dis 58:19–28. doi:10.1016/j.nbd.2013.04.018
Article
CAS
PubMed
PubMed Central
Google Scholar
van der Stelt M, Trevisani M, Vellani V et al (2005) Anandamide acts as an intracellular messenger amplifying Ca2+ influx via TRPV1 channels. EMBO J 24:3026–3037. doi:10.1038/sj.emboj.7600784
Article
PubMed
PubMed Central
Google Scholar
Van Der Stelt M, Di Marzo V (2004) Endovanilloids. Putative endogenous ligands of transient receptor potential vanilloid 1 channels. Eur J Biochem FEBS 271:1827–1834. doi:10.1111/j.1432-1033.2004.04081.x
Article
Google Scholar
Ferdinandy P, Csont T, Csonka C et al (1997) Capsaicin-sensitive local sensory innervation is involved in pacing-induced preconditioning in rat hearts: role of nitric oxide and CGRP? Naunyn Schmiedebergs Arch Pharmacol 356:356–363
Article
CAS
PubMed
Google Scholar
Kurosawa M, Messlinger K, Pawlak M, Schmidt RF (1995) Increase of meningeal blood flow after electrical stimulation of rat dura mater encephali: mediation by calcitonin gene-related peptide. Br J Pharmacol 114:1397–1402
Article
CAS
PubMed
PubMed Central
Google Scholar
Levy D, Strassman AM (2002) Mechanical response properties of A and C primary afferent neurons innervating the rat intracranial dura. J Neurophysiol 88:3021–3031. doi:10.1152/jn.00029.2002
Article
PubMed
Google Scholar
Ebersberger A, Averbeck B, Messlinger K, Reeh PW (1999) Release of substance P, calcitonin gene-related peptide and prostaglandin E2 from rat dura mater encephali following electrical and chemical stimulation in vitro. Neuroscience 89:901–907
Article
CAS
PubMed
Google Scholar
Schwenger N, Dux M, de Col R et al (2007) Interaction of calcitonin gene-related peptide, nitric oxide and histamine release in neurogenic blood flow and afferent activation in the rat cranial dura mater. Cephalalgia Int J Headache 27:481–491. doi:10.1111/j.1468-2982.2007.01321.x
Article
CAS
Google Scholar
Raddant AC, Russo AF (2011) Calcitonin gene-related peptide in migraine: intersection of peripheral inflammation and central modulation. Expert Rev Mol Med 13:e36. doi:10.1017/S1462399411002067
Article
PubMed
PubMed Central
Google Scholar
Hoffmann J, Wecker S, Neeb L et al (2012) Primary trigeminal afferents are the main source for stimulus-induced CGRP release into jugular vein blood and CSF. Cephalalgia Int J Headache 32:659–667. doi:10.1177/0333102412447701
Article
Google Scholar
Kageneck C, Nixdorf-Bergweiler BE, Messlinger K, Fischer MJ (2014) Release of CGRP from mouse brainstem slices indicates central inhibitory effect of triptans and kynurenate. J Headache Pain 15:7. doi:10.1186/1129-2377-15-7
Article
PubMed
PubMed Central
Google Scholar
Neeb L, Hellen P, Hoffmann J et al (2016) Methylprednisolone blocks interleukin 1 beta induced calcitonin gene related peptide release in trigeminal ganglia cells. J Headache Pain 17:19. doi:10.1186/s10194-016-0609-x
Article
PubMed
PubMed Central
Google Scholar
Ligresti A, Morera E, Van Der Stelt M et al (2004) Further evidence for the existence of a specific process for the membrane transport of anandamide. Biochem J 380:265–272. doi:10.1042/BJ20031812
Article
CAS
PubMed
PubMed Central
Google Scholar
McVey DC, Schmid PC, Schmid HHO, Vigna SR (2003) Endocannabinoids induce ileitis in rats via the capsaicin receptor (VR1). J Pharmacol Exp Ther 304:713–722. doi:10.1124/jpet.102.043893
Article
CAS
PubMed
Google Scholar
Ross RA, Gibson TM, Brockie HC et al (2001) Structure-activity relationship for the endogenous cannabinoid, anandamide, and certain of its analogues at vanilloid receptors in transfected cells and vas deferens. Br J Pharmacol 132:631–640. doi:10.1038/sj.bjp.0703850
Article
CAS
PubMed
PubMed Central
Google Scholar
Singh Tahim A, Sántha P, Nagy I (2005) Inflammatory mediators convert anandamide into a potent activator of the vanilloid type 1 transient receptor potential receptor in nociceptive primary sensory neurons. Neuroscience 136:539–548. doi:10.1016/j.neuroscience.2005.08.005
Article
CAS
PubMed
Google Scholar
Sousa-Valente J, Varga A, Ananthan K et al (2014) Anandamide in primary sensory neurons: too much of a good thing? Eur J Neurosci 39:409–418. doi:10.1111/ejn.12467
Article
PubMed
Google Scholar
Tognetto M, Amadesi S, Harrison S et al (2001) Anandamide excites central terminals of dorsal root ganglion neurons via vanilloid receptor-1 activation. J Neurosci Off J Soc Neurosci 21:1104–1109
CAS
Google Scholar
Pacher P, Bátkai S, Kunos G (2006) The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol Rev 58:389–462. doi:10.1124/pr.58.3.2
Article
CAS
PubMed
PubMed Central
Google Scholar
Starowicz K, Nigam S, Di Marzo V (2007) Biochemistry and pharmacology of endovanilloids. Pharmacol Ther 114:13–33. doi:10.1016/j.pharmthera.2007.01.005
Article
CAS
PubMed
Google Scholar
Gardiner SM, March JE, Kemp PA, Bennett T (2002) Complex regional haemodynamic effects of anandamide in conscious rats. Br J Pharmacol 135:1889–1896. doi:10.1038/sj.bjp.0704649
Article
CAS
PubMed
PubMed Central
Google Scholar
Rózsa Z, Jancsó G, Varró V (1984) Possible involvement of capsaicin-sensitive sensory nerves in the regulation of intestinal blood flow in the dog. Naunyn Schmiedebergs Arch Pharmacol 326:352–356
Article
PubMed
Google Scholar
Tamaki C, Nawa H, Takatori S et al (2012) Anandamide induces endothelium-dependent vasoconstriction and CGRPergic nerve-mediated vasodilatation in the rat mesenteric vascular bed. J Pharmacol Sci 118:496–505
Article
CAS
PubMed
Google Scholar
Duckles SP (1986) Effects of capsaicin on vascular smooth muscle. Naunyn Schmiedebergs Arch Pharmacol 333:59–64
Article
CAS
PubMed
Google Scholar
Pórszász R, Porkoláb A, Ferencz A et al (2002) Capsaicin-induced nonneural vasoconstriction in canine mesenteric arteries. Eur J Pharmacol 441:173–175
Article
PubMed
Google Scholar
Toda N, Usui H, Nishino N, Fujiwara M (1972) Cardiovascular effects of capsaicin in dogs and rabbits. J Pharmacol Exp Ther 181:512–521
CAS
PubMed
Google Scholar
Kark T, Bagi Z, Lizanecz E et al (2008) Tissue-specific regulation of microvascular diameter: opposite functional roles of neuronal and smooth muscle located vanilloid receptor-1. Mol Pharmacol 73:1405–1412. doi:10.1124/mol.107.043323
Article
CAS
PubMed
Google Scholar
Dux M, Schwenger N, Messlinger K (2002) Possible role of histamine (H1- and H2-) receptors in the regulation of meningeal blood flow. Br J Pharmacol 137:874–880. doi:10.1038/sj.bjp.0704946
Article
CAS
PubMed
PubMed Central
Google Scholar
Ahluwalia J, Urban L, Bevan S, Nagy I (2003) Anandamide regulates neuropeptide release from capsaicin-sensitive primary sensory neurons by activating both the cannabinoid 1 receptor and the vanilloid receptor 1 in vitro. Eur J Neurosci 17:2611–2618
Article
PubMed
Google Scholar
Hermann H, De Petrocellis L, Bisogno T et al (2003) Dual effect of cannabinoid CB1 receptor stimulation on a vanilloid VR1 receptor-mediated response. Cell Mol Life Sci CMLS 60:607–616
Article
CAS
PubMed
Google Scholar