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Abstract

Objectives: To explore the possible concurrent brain functional and structural alterations in patients with migraine
without aura (MwoA) patients compared to healthy subjects (HS).

Methods: Seventy-two MwoA patients and forty-six HS were recruited. 3D-T1 and resting state fMRI data were
collected during the interictal period for MwoA and HS. Voxel-based morphometry (VBM) for structure analysis and
regional homogeneity (Reho) for fMRI analysis were applied. The VBM and Reho maps were overlapped to
determine a possible brain region with concurrent functional and structural alteration in MwoA patients. Further
analysis of resting state functional connectivity (FC) alteration was applied with this brain region as the seed.

Results: Compared with HS, MwoA patients showed decreased volume in the bilateral superior and inferior
colliculus, periaqueductal gray matter (PAG), locus ceruleus, median raphe nuclei (MRN) and dorsal pons medulla
junction. MwoA patients showed decreased Reho values in the middle occipital gyrus and inferior occipital gyrus,
and increased Reho values in the MRN. Only a region in the MRN showed both structural and functional alteration
in MwoA patients. Pearson correlation analysis showed that there was no association between volume or Reho
values of the MRN and headache frequency, headache intensity, disease duration, self-rating anxiety scale or self-
rating depression scale in MwoA patients. Resting state functional connectivity (FC) with the MRN as the seed
showed that MwoA patients had increased FC between the MRN and PAG.

Conclusions: MRN are involved in the pathophysiology of migraine during the interictal period. This study may
help to better understand the migraine symptoms.

Trial registration: NCT01152632. Registered 27 June 2010.
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Introduction
Migraine is a paroxysmal neurological disorder, classic-
ally characterized by unilateral throbbing, pulsating
headache associated with nausea, vomiting, photophobia,
phonophobia, or allodynia [1]. Between migraine attacks,
migraineurs often have accompanying symptoms, such
as fatigue, sleep disturbances [2], altered cognition and/
or mood changes [3]. According to the 3rd edition of
International Classification of Headache Disorders (the
most commonly used criteria in research), there are two
major types of migraine: migraine without aura (MwoA)
and migraine with aura [4]. About 64% of migraine pa-
tients fall into MwoA subtype, which is the most preva-
lent type among migraineurs [5]. Migraine has become
an important public health and social issue due to its
high prevalence worldwide [6], large medical burden [7],
disabling effects [7], and serious reduction in quality of
life [8]. However, the pathophysiology of migraine is not
fully understood.
Because migraine is mainly a disorder of the brain, neu-

roimaging studies have great potential to provide insight
into the pathophysiology of migraine. Studies using neuro-
imaging techniques to evaluate brain function or structure
in migraine have reported with increasing frequency in re-
cent decades. However, many of these studies either focus
on structural or functional changes [9–13], rather than in-
cluding both. Furthermore, most of these studies are diffi-
cult to replicate, and no reproducible biomarkers of
migraine have been identified [13]. The significance of de-
fining concurrent functional and structural differences
may provide specific insights into the unfolding brain’s
adaptive or maladaptive changes in migraineurs.
There are some previous works that have used both

structural and functional MRI in migraine. Some studies
reporting concurrent brain functional and structural dif-
ferences in migraineurs are focusing on particular pre-
defined brain regions (such as cerebellum [14], hippo-
campus [15], or only cortical regions [16]) or combining
structural analysis with hypothesis-driven functional
analysis methods [17–19]. One recent study combined
global structural analysis (tensor-based morphometry)
and hypothesis-free functional analysis (independent
component analysis) in migraineurs [20]. In this study,
we aim to combine whole brain data-driven analysis
methods, i.e. voxel-based morphometry (VBM) [21] for
structural analysis, and regional homogeneity (Reho)
[22] for functional analysis, in order to explore the pos-
sible concurrent functional and structural alterations in
migraineurs relative to healthy subjects.

Methods
This study represents the baseline assessment of a
registered clinical trial listed on clinicaltrials.gov
(NCT01152632, June 27, 2010). The study protocol was

approved by the ethics committee of the first teaching
hospital of Chengdu University of Traditional Chinese
Medicine. Participants were enrolled from the outpatient
department of the 3rd Teaching Hospital and the cam-
pus of Chengdu University of Traditional Chinese
Medicine.

Participants
Seventy-two migraineurs without aura (MwoA) were re-
cruited. These patients were diagnosed according to the
International Classification of Headache Disorders, 2nd
Edition ICHD-II MwoA criteria [23]. Inclusion criteria
required all subjects (1) being between 17 and 45 years
of age and right-handed; (2) not taking any prophylactic
headache medicine, or acupuncture treatment within the
last 3 months before the recruitment; (3) migraines of at
least 6 months duration; (4) at least one headache attack
per month during the last 3 months, and (5) having
signed a written consent form. Subjects were excluded if
they had any history of (1) alcohol or drug abuse; (2)
pregnancy or experiencing lactation; (3) suffering from
psychiatric, neurologic, cardiovascular, respiratory or
renal illnesses; (4) suffering from any other chronic pain
conditions or having a history of head trauma, with loss
of consciousness; (5) having fMRI contraindications,
such as claustrophobia.
Forty-six age-matched, right-handed healthy subjects

(HS), free from any chronic pain condition (such as mi-
graine and tension type headache), were recruited for
this study as controls. In order to exclude organic dis-
ease carriers, a basic evaluation was performed in each
subject before recruitment, including a review of their
medical history, physical examination, hepatic and renal
function tests, and routine analysis of blood, urine, and
stool. Individuals with any abnormal test results or his-
tory of head trauma with loss of consciousness, preg-
nancy or lactation were excluded.
Patients were instructed and also agreed not to take

any regular medications for the treatment of migraines
during observation period. In cases of severe pain, ibu-
profen (300mg each capsule with sustained release) was
allowed as rescue medication during observation period.
All migraine patients in this study were migraine-free
for at least 72 h at the time of the MRI scan.

Clinic variables measures
The demographic information (including age, gender,
weight and height) of the participants were recorded.
The clinical outcomes were the headache intensity
(using a 0–10 visual analogue scale (VAS), 0 indicates
no pain, 10 indicates worst pain ever) and the frequency
of migraine attacks (the number of migraines separated
by pain free intervals of at least 48 h of headache) based
on patients’ headache diary according to the guidelines
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of the IHS for Clinical Trials in Migraine [24]. In
addition, self-rating anxiety scale (SAS) and self-rating
depression scale (SDS) were applied to assess the anxiety
and depression status in MwoA patients [2, 25, 26].

MRI data acquisition
MRI data was acquired on a 3.0 T Siemens Trio Tim
system equipped with an 8-channel phase-array head
coil at the West China Hospital MRI center. Prior to the
functional run, a high-resolution structural image for
each subject was acquired using a three-dimensional
MRI sequence with a voxel size of 1mm3 employing an
axial fast spoiled gradient recalled sequence (TR = 1900
ms; TE = 2.26 ms; data matrix, 256 × 256; field of view,
256 × 256 mm2). The blood oxygen level dependent
(BOLD) resting-state functional images were obtained
with echo-planar imaging (30 contiguous slices with a
slice thickness of 5 mm; TR = 2000ms; TE = 30 ms; flip
angle, 90°; field of view, 240 × 240mm2; data matrix,
64 × 64; total volumes, 180). All the participants were
instructed to stay awake and to keep their heads still
during the scan, with their eyes closed and ears plugged.

Data analysis
Clinical data analysis
The baseline demographic information was analyzed
using SPSS16.0 (SPSS Inc., Chicago, IL). Between-group
comparisons were performed using two sample t-tests or
Χ2, as appropriate. The significant level used for the stat-
istical analysis with two sample t-tests was 5%. Continu-
ous variables were presented as the mean with 95%
confidence intervals (CI). Categorical variables were de-
scribed as n (percentage).

VBM analysis
Pre-processing of structural images for VBM analyses
was performed using SPM12 (www.fil.ion.ucl.ac.uk), and
the CAT12 toolbox of the MatLab environment [21].
The images acquired for each participant were reor-
iented to have the same point of origin (anterior
commissure) and spatial orientation. A non-linear de-
formation field was estimated that best overlaid the tis-
sue probability maps on the individual subjects’ images.
Three tissue components, including the gray matter
(GM), white matter (WM), and cerebral spinal fluid
(CSF), were obtained to calculate the overall tissue vol-
ume (GM, WM, and CSF volume) and total intracranial
volume in the native space. Afterwards, all of the native-
space tissue segments were registered to the standard
Montreal Neurological Institute template (the standard
included in SPM12) using the affine registration
algorithm. The diffeomorphic anatomical registration
through the exponentiated lie algebra (DARTEL) tool-
box was applied to all participants’ GM and WM to

refine the inter-subject registration. In the last step of
DARTEL, the GM tissues are modulated using a non-
linear deformation approach to compare the relative
GM volume adjusted for individual brain size. Further-
more, the voxel values in the tissue maps are modulated
by the Jacobian determinant that was calculated during
spatial normalization [27]. Lastly, each participant’s
modulated and normalized GM tissue segments were
smoothed with an 8-mm full width at half maximum
Gaussian filter. This involved segmentation of raw T1-
weighted images into gray matter maps using SPM12,
then registration using the nonlinear DARTEL algorithm
to Montreal Neurological Institute space and resampling
with a 8 mm smoothing kernel. Each tissue class (ie,
GM) was processed independently after segmentation.
After completing these image analyses, we obtained
smoothed and modulated gray matter images to be used
for statistical analysis. Two-sample t tests were used to
compare the patients and healthy subjects, implementing
the total intracranial volume as covariance. The signifi-
cance of group differences was set at P < 0.05 using
family-wise error correction.

Reho and seed based Functional Connectivity (FC) analysis
The rs-fMRI data preprocessing, Reho analysis and seed
based FC analysis were performed using the Data Pro-
cessing Assistant for Resting-State fMRI (DPARSF) soft-
ware (available at:http://rfmri.org/DPARSF) in MatLab
environment. The first 10 volumes were not analyzed to
allow for signal equilibration effects. The fMRI images
were slice timing corrected, head motion corrected, cor-
egistered to respective structural images for each subject,
segmented, regressed out of 6 head motion parameters,
white matter signal and cerebrospinal fluid (CSF) signal,
normalized by using structural image unified segmenta-
tion, and then re-sampled to 3-mm cubic voxels. We re-
moved frames with FD > 0.5 mm (‘scrubbing’), one time
point before ‘bad’ time points and two time points after
‘bad’ time points were deleted. The data was then
detrended, bandpass filtered from 0.01 to 0.08 Hz and
smoothed with a 8-mm full-width half-maximum
(FWHM) Gaussian kernel for FC analysis.

Reho analysis We compared the ReHo difference be-
tween MwoA patients and HS in SPM12. Individual
Reho maps were generated by calculating Kendall’s coef-
ficient concordance (KCC, also called ReHo value) of the
time series of a given voxel with its nearest neighbors
(26 voxels), on a voxel-wise basis [22]. Then, the data
were smoothed with a Gaussian filter of 8 mm full width
at half-maximum (FWHM) to reduce noise and residual
differences in gyral anatomy. The ReHo maps were gen-
erated for each subject in each group. The significance
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of group differences was set at P < 0.05 using family-wise
error correction for statistical analysis.
In order to find the possible regions with both struc-

tural (VBM) and functional (Reho) alterations in MwoA
patients, the abnormal Reho and VBM maps of MwoA
patients were overlapped. Only a region in the brain-
stem, named MRN [28], showed overlap in MwoA pa-
tients (Fig. 2 and Fig. 3). We then extracted the VBM
and Reho values of the overlapped region in MRN in
MwoA patients and healthy subjects. Pearson correlation
analysis was applied between VBM or Reho values and
headache intensity, headache frequency or disease dur-
ation of MwoA patients.

FC analysis To further assess the possible correlation of
the overlapped region in MRN with other brain regions
in MwoA patients, resting state functional connectivity
analysis was carried out by using the region in MRN as a
seed. The averaged time course was obtained from the
seed and the correlation analysis was performed in a
voxel-wise way. Contrast images were generated for each
subject by estimating the regression coefficient between
all brain voxels and each seed’s time series, respectively.
The correlation coefficient map was then converted into
a Fisher-Z map by Fisher’s r-to-z transform to improve
the normality. We compared the resting state functional
connectivity difference between MwoA patients and
healthy controls using two sample t-tests. A P < 0.05
family wise error corrected at cluster level was applied
for all the comparisons.

Results
Baseline characteristics
There was no statistical difference between the MwoA
patients and the healthy subjects, in age, gender, weight
and height (P > 0.05) (Table 1).

VBM and Reho results
VBM
Compared with healthy subjects, MwoA patients showed
decreased volume in the bilateral superior and inferior
colliculus, periaqueductal grey (PAG), locus ceruleus
(LC), median raphe nuclei (MRN) and dorsal pons
medulla junction. MwoA patients showed no increased
volume in any brain regions, compared with healthy
subjects (Table 2 and Fig. 1).

Reho
Compared with healthy subjects, MwoA patients showed
decreased Reho values in the right middle occipital
gyrus, inferior occipital gyrus and left middle occipital
gyrus, and increased Reho values in the bilateral MRN
(Table 2 and Fig. 1).
Only a region in the MRN [28] showed both structural

(VBM) and functional (Reho) alterations in MwoA patients.
MwoA had decreased volume but increased Reho values in
the MRN compared with healthy subjects (Fig. 2). Pearson
correlation analysis showed that there was no association
between volume or Reho values of the MRN and headache
frequency, headache intensity, disease duration, SAS
or SDS in MwoA patients (VBM-headache frequency,
r = 0.025, p = 0.837; VBM-headache intensity, r = − 0.029,
p = 0.809; VBM-disease duration, r = 0.003, p = 0.977;
VBM-SAS, r = − 0.039, p = 0.742; VBM-SDS, r = − 0.036,
p = 0.762; Reho-headache frequency, r = 0.049, p = 0.682;
Reho-headache intensity, r = − 0.023, p = 0.847; Reho-
disease duration, r = 0.137, p = 0.250; Reho-SAS, r = 0.058,
p = 0.628; Reho-SDS, r = 0.126, p = 0.290).

Median raphe nuclei FC results
Compared with healthy subjects, MwoA patients showed
increased FC between the MRN and PAG. MwoA pa-
tients showed no decreased FC between the MRN and
any other brain regions, compared with healthy subjects
(Table 3 and Fig. 3).

Table 1 Baseline characteristics of MwoA patients and healthy subjects

Characteristics MwoA, n = 72 HS, n = 46 P value*

Female n(%) 57 (79.2%) 34 (79.1%) 0.907

Age (y) Mean (95%CI) 21.30 (20.89–21.73) 21.24 (20.98–21.50) 0.789

Height (cm) Mean (95%CI) 160.22 (158.49–161.96) 161.11 (158.49–161.96) 0.493

Weight (kg) Mean (95%CI) 52.49 (50.56–54.42) 51.13 (49.33–52.93) 0.335

Duration (mo) Mean (95%CI) 66.75 (32.19–101.31) – –

Headache intensity Mean (95%CI) 5.55 (4.41–6.69) – –

Headache frequency Mean (95%CI) 5.89 (2.62–9.16) – –

SAS score Mean (95%CI) 46.11 (37.17–55.06) – –

SDS score Mean (95%CI) 45.73 (35.51–55.95) – –

HS healthy subjects, MwoA migraine without aura, SAS self-rating anxiety scale, SDS self-rating depression scale
*, χ2 test was applied for gender comparison, two-sample t test was applied for the rest comparisions, between MwoA patients and healthy subjects
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We did not find any correlation between the MRN
functional connectivity changes and patients’ clinical fea-
tures as well as between the other volume or Reho alter-
ations and patients’ clinical variables. To further test the
reliability of these results, we added age and gender as
covariates for re-analysis of Reho, VBM and FC and got
similar results.

Discussion
This study found that MwoA patients had decreased vol-
ume but increased ReHo in MRN. Besides, the MRN
with both structural and functional alteration had in-
creased resting state functional connectivity with PAG in
MwoA patients. However, the correlation analysis
showed that the VBM and Reho values of the MRN were

Table 2 The VBM and Reho comparisons between MwoA patients and healthy subjects

Contrast Voxels Brain regions peak MNI (x, y, z) Z score

VBM comparison between MwoA patients and healthy subjects

MwoA < HS 1508 bilateral superior and inferior colliculus
/ PAG / LC / MRN

-8 −23 −9 Inf

109 bilateral dorsal pons medulla junction 3 −38 −44 6.78

MwoA > HS No brain region above the threshold.

Reho comparison between MwoA patients and healthy subjects

MwoA < HS 95 right MOG 33 −75 27 6.79

12 right IOG 21 −72 36 5.14

36 left MOG −30 −81 21 6.14

MwoA > HS 11 bilateral MRN 6 −33 −24 4.93

HS healthy subjects, Inf infinity, IOG inferior occipital gyrus, LC locus ceruleus, MNI Montreal Neurological Institute coordinate, MOG middle occipital gyrus, MwoA
migraine without aura patient, MRN median raphe nuclei, Reho regional homogeneity, VBM voxel-based morphometry
A threshold of P < 0.05 family wise error (FWE) correction at cluster level were applied for all comparisons. Z score infinity in this table means the probability of
the VBM value in the peak MNI(x = − 8, y = −23, z = −9) of healthy subjects > migraineurs is approximately 100%

Fig. 1 The VBM and Reho comparisons between MwoA patients and healthy subjects. a. MwoA patients showed lower gray matter volumes in
the bilateral superior and inferior colliculus, PAG, LC, MRN and dorsal pons medulla junction compared to HS; b. MwoA patients showed lower
Reho values in the right MOG and bilateral IOG compared to HS; c. MwoA patients showed higher Reho values in bilateral MRN compared to HS.
A threshold of P < 0.05 family wise error (FWE) correction at cluster level were applied for all comparisons. HS, healthy subjects; IOG, inferior
occipital gyrus; L, left side; LC, locus ceruleus; MOG, middle occipital gyrus; MwoA, migraine without aura; PAG, periaqueductal gray; R, right side;
Reho, regional homogeneity; MRN, median raphe nuclei; VBM, voxel-based morphometry
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not correlated with headache frequency, headache inten-
sity, disease duration, SAS or SDS. This structural and
functional neuroimaging study supports the involvement
of MRN in the pathophysiology of migraine.
Regional homogeneity (Reho) is a method that applies

Kendall’s coefficient of concordance to resting-state
BOLD fMRI data in order to measure the similarity of
the time series of a given voxel to those of its nearest
neighbors in a voxel-wise way [22], which could reflect
the local synchronization of spontaneous neural activity,
hierarchical organization of the brain and neurodevelop-
mental factors [29]. Unlike functional connectivity or ex-
ploratory independent component analysis node-to-node
connectivity which reflect interregional relationship

between remote brain regions, Reho is a local spatial
scale to measure functional interactions or synchroniza-
tions between the neighboring voxels or vertices [29].
Voxel-based morphometry (VBM) is a computational
approach to neuroanatomy that measures differences in
local concentrations of brain tissue, through a voxel-
wise comparison of multiple brain images [21], which
could reflect tissue atrophy or expansion [30]. Both Reho
and VBM are data-driven analysis methods, reflecting
the functional and structural status in vivo. Studies using
Reho [31–34] or VBM [35–39] alone for patients with
migraine have been reported. Whole-brain VBM or
Reho studies identified widespread functional and vol-
ume alternations in migraineurs, specifically in the
frontal cortex and limbic systems [31–39]. However, not
all studies reported consistent, stable and replicable find-
ings. To our knowledge, this is the first neuroimaging
study combining Reho, VBM and FC to explore the con-
current functional and structural differences in migrai-
neurs, which may provide specific and more reliable
insights into the unfolding brain’s adaptive or maladap-
tive changes in migraineurs.
It is widely accepted that migraine involves activation

and sensitization of trigeminovascular pathways [40], as
well as brainstem and diencephalic nuclei [41]. This
study found that MwoA patients had a concurrent brain
structural and functional alteration in MRN. MRN is

Fig. 2 The VBM and Reho values of the overlapped region in MRN in MwoA patients and healthy subjects. MwoA had decreased gray matter
volume but increased Reho values in the median raphe nuclei compared with healthy subjects. Pearson correlation analysis showed that there
was no association between volume or Reho values of the MRN and headache frequency, headache intensity or disease duration, SAS and SDS in
MwoA patients. HS, healthy subjects; MwoA, migraine without aura; Reho, regional homogeneity; MRN, median raphe nuclei; VBM,
voxel-based morphometry

Table 3 Altered median raphe nuclei functional connectivity in
MwoA patients

Contrast Voxels Brain regions MNI (x, y, z) Z score

Median raphe nuclei FC comparison between MwoA patients and
healthy subjects

MwoA > HS 28 bilateral PAG 3 −21 −6 5.19

5 bilateral MRN 3 −30 − 24 5.18

MwoA < HS No brain region above the threshold.

HS healthy subjects, MNI Montreal Neurological Institute coordinate, MwoA
migraine without aura patient, MRN median raphe nuclei, PAG
periaqueductal gray
A threshold of P < 0.05 family wise error (FWE) correction at cluster level were
applied for all comparisons
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located in the brainstem, extending from the caudal edge
of the superior cerebellar peduncles to the motor nu-
cleus of the Vth cranial nerve [42]. Previous studies re-
port that MRN plays a critical role in the regulation of
hippocampal activity and is likely involved in memory
consolidation processes [43], depression [44] and anxiety
[45]. Besides, MRN is also an important brain region in
the human ascending arousal system, which is related
with consciousness maintenance and its disorders such
as fatigue and sleep disturbance [28]. In migraine pa-
tients, recent transcranial sonography studies reported
that a hypoechogenic MRN correlated to a higher mi-
graine attack frequency [46] and depression [47]. MRN
is the main source of 5-hydroxytryptamine (5-HT, also
known as serotonin) in the brain [48]. Serotonin is a
neurotransmitter that is affected by many physical and
emotional processes, including depression, mood, social
functioning, exercise, and diet [49]. In migraineurs, de-
creased levels of serotonin have been observed [50].
Serotonin receptors have been found on the trigeminal
nerve and cranial vessels and their agonists especially
triptans are effective in migraine treatment [51]. Al-
though there is a growing body of evidence for a direct

role for dysfunctions of central 5-HT and MRN avail-
ability in migraine, the exact and specific action of en-
dogenous 5-HT system and MRN in migraine continues
to be the focus of active investigation [46, 47, 52].
In order to further explore the MRN’s correlation with

other brain regions in migraineurs, resting state func-
tional connectivity analysis was applied by taking the re-
gion in MRN as the seed. This study found that the
MRN had increased functional connectivity with PAG in
migraineurs relative to HS. Previous animal neuroanat-
omy studies reported that the afferences for MRN
mainly came from the limbic system, while the effer-
ences were mainly to the lateral cortex, hypothalamus,
amygdala, hippocampus, and medial cortex [42]. Some
studies also report that MRN contribute serotoninergic
projections to both the PAG (especially ventrolateral
PAG) and the superior colliculus, the neural circus of
which is related with a brain aversive system and pain
modulation [53, 54]. The PAG plays a central role in de-
scending pain modulatory system and is closely associ-
ated with opioid analgesia [55]. Animal studies also
showed that descending modulation of the trigeminocer-
vical complex (TCC), through the ventrolateral PAG and

Fig. 3 Altered median raphe nuclei functional connectivity in MwoA patients. MwoA patients showed higher median raphe nuclei functional
connectivity with local median raphe nuclei and PAG compared to HS. A threshold of P < 0.05 family wise error (FWE) correction at cluster level
were applied for all comparisons. A, anterior; FC, functional connectivity; HS, healthy subjects; MwoA, migraine without aura; P, posterior; PAG,
periaqueductal gray; R, right side; Reho, regional homogeneity; MRN, median raphe nuclei; S, superior; VBM, voxel-based morphometry
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rostral ventromedial medulla, could cause the activation
of ‘on’ cells and the inhibition of ‘off’ cells in the rostral
ventromedial medulla, which seems to be critical for ac-
tivation of TCC and development of migraine headache
[41, 56, 57]. Taken together, this structural and func-
tional neuroimaging study provide a more reliable evi-
dence supporting the involvement of MRN in the
pathophysiology of migraine.
There are several potential limitations in this study. 1)

HS did not have SAS and SDS examined, which may
have left the depression and anxiety level uncontrolled
for migraineurs in this study. 2). This study primarily fo-
cused on the headache frequency, headache intensity
and disease duration in migraineurs, with the symptoms
such as allodynia, fatigue and sleep disturbances unre-
corded. 3) This is a descriptive, not a mechanistic study.
4) The time elapsed between the MRI exam and the fol-
lowing migraine attack was not recorded, which might
include the prodrome phases as the potential confound-
ing bias. 5) The MRN structure and function alterna-
tions in this study are in alignment with many other
neuroimaging studies. However, structural changes
might affect the local non-linear registration fields and
give rise to an observation of falsely positive functional
MRI changes. This is a potential limitation for this
study.

Conclusion
Concurrent brain structural and functional alterations in
MRN suggest that this structure is involved in the
pathophysiology of migraine during the interictal period,
which might help to better understand the symptoms in
migraineurs.
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