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Haemodynamic activity characterization of
resting state networks by fractal analysis
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Abstract

Background: Chronic migraine (CM) can be associated with aberrant long-range connectivity of MRI-derived
resting-state networks (RSNs). Here, we investigated how the fractal dimension (FD) of blood oxygenation level
dependent (BOLD) activity may be used to estimate the complexity of RSNs, reflecting flexibility and/or efficiency in
information processing in CM patients respect to healthy controls (HC).

Methods: Resting-state MRI data were collected from 20 untreated CM without history of medication overuse and
20 HC. On both groups, we estimated the Higuchi’s FD. On the same subjects, fractional anisotropy (FA) and mean
diffusivity (MD) values of bilateral thalami were retrieved from diffusion tensor imaging and correlated with the FD
values.

Results: CM showed higher FD values within dorsal attention system (DAS) and the anterior part of default-mode
network (DMN), and lower FD values within the posterior DMN compared to HC. Although FA and MD were within
the range of normality, both correlated with the FD values of DAS.

Conclusions: FD of DAS and DMN may reflect disruption of cognitive control of pain in CM. Since the normal
microstructure of the thalamus and its positive connectivity with the cortical networking found in our CM patients
reminds similar results obtained assessing the same structures but with the methods of neurophysiology, in
episodic migraine during an attack, this may be yet another evidence in supporting CM as a never-ending migraine
attack.
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Introduction
Up to 3 % of migraines evolve from episodic to chronic
annually [1]. It is common agreement that sensitization
at the third-order thalamic neurons [2] and at the cor-
tical level [3] drives the functional and clinical changes
accompanying migraine chronification. One of the as-
pects of the migraine brain most explored with func-
tional Magnetic Resonance Imaging (fMRI) is functional
activity at rest so called resting-state networks (RSNs). It
can capture the macroscopic spatial dynamics of the
blood oxygenation level dependent (BOLD) signal of the
brain, which is the basis to form networks [4]. Several
research groups have detected alterations in the dynam-
ics of different cortical networks in chronic migraine pa-
tients [5]. None of them have investigated yet the
integrity of the thalamo-cortical network activity in pa-
tients with chronic migraine (CM).
Specifically, we aimed to investigate how the dynamics

of BOLD activity at rest can be used to differentiate RSNs
in CM patients compared to healthy controls (HC).
However, despite the fact that linear methods being

predominantly used in characterizing brain oscillations
in both healthy and pathological conditions, linear ana-
lysis may not be suitable to describe the irregular and
non-periodic patterns recorded by electrophysiological
and neuroimaging techniques [6, 7].
To this end, we characterized the specific BOLD signa-

ture of each RSN, using a complexity measure called
fractal dimension (FD) [8] that has advantages over clas-
sical linear methods such as the well-known fast Fourier
transformation (FFT) that are best suited to conditions
where the analysed signals are stationary. We further
searched for correlations with microstructure of the
thalamus, quantified by acquiring water diffusion met-
rics. These morpho-functional measures were previously
found to be related in episodic migraine [9, 10].
FD is a general measure of complexity derived from

chaos theory, based on the fact that a simple process
that is repeated endlessly becomes a very complex
process, which is the basis for the description of fractals
in nature [11]. These complex processes of interactions
cause a pattern in brain activity that is self-similar over
different spatial and temporal scales. In other words,
neural activity shows similar features over and over
again on a scale-free basis [12, 13]. Knowing that FD is
an accurate numerical measure no matter what the
properties (stationary, nonstationary, deterministic or
stochastic) of the analysed signal, it is reasonable to
accept this advantage over widely used FFT linear
method [14]. In addition, recent evidence has demon-
strated that in many cases brain signals considered as
belonging to a frequency-defined class of brain rhythms
do not represent sustained oscillations, but rather brief
bouts of activity that are repeated intermittently (i.e.,

non-rhythmic) [15, 16]. Recognition that physiological
time series contain “hidden information” that might be cap-
tured by non-linear methods such as fractal analysis, may
provide crucial and so far overlooked physiological infor-
mation in healthy and pathological conditions [17–20].
However, while this type of nonlinear approaches is no lon-
ger an issue in the domain of EEG, there are just few appli-
cations on the analysis of micro [21] and macro [22, 23]
structural neuroimaging data. To the best of our know-
ledge, there are no MRI studies using FD to determine the
spatio-temporal dynamics of the complexity of independent
brain networks. Moreover, there are no reports inferring
thalamo-cortical network connectivity by correlating the
complexity of functional networks with thalamic micro-
structural metrics obtained by means of diffusion tensor
imaging. The thalamic microstructure has been found al-
tered in patients with episodic migraine [9, 24–26] and the
thalamus has been considered an important structure in
the process of migraine chronification and its related clin-
ical manifestation, i.e. widespread cutaneous allodynia [2].
Despite the uttermost importance thus to gather more data
about thalamic microstructure when patients evolve from
episodic to CM and to verify its relationship with cortical
functional networks at rest, none has done this yet.
Here, we inferred thalamo-cortical networks activity

by investigating thalamic microstructure, by means of
diffusion tensor imaging (DTI), and independent cortical
networking taking the advantages of the innovative non-
linear approach of FD analysis in a group of CM patients
devoid of medication overuse and without prophylaxis.

Materials and methods
Participants
In accordance with the diagnostic criteria of the Inter-
national Classification of Headache Disorders (ICHD-III),
20 patients with chronic migraine (code 1.3; 14 female
and 6 male) were prospectively enrolled (Table 1). All en-
listed patients had a clear history of episodic migraine
without aura (code 1.1), but not a history of excessive use
of symptomatic medications. None of the patients had
been on prophylactic therapy in the last 3 months. All but
2 patients who complained of mild headache were re-
corded during the pain-free period. This study is part of a
more comprehensive one in which the same patients
underwent multiple neuroimaging tests during the same
experimental session. The healthy subjects in this study
were published elsewhere [27–29]. The criteria for exclu-
sion were the presence of neurological comorbidities other
than migraine, obvious psychiatric disorders, endocrino-
logical disorders, autoimmune or connective tissue disor-
ders, and arterial hypertension. Between one patient and
another, 20 healthy controls (HC, 13 women and 7 men)
were scanned without any personal or family history of
migraine or another primary headache, and any other
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manifest medical condition. All enrolled women were
scanned outside the days of the menstruation (at an aver-
age of 17.8 for HC and 18.1 for CM days after the 1st day
of the last menstruation). All recordings were conducted
in the afternoon, from 4 p.m. to 7 p.m. All participants in
the study were informed of its purpose, after which they
signed an informed consent. The study was approved by
the ethical committee of the Sapienza University of Rome.

Data acquisition and preprocessing
MRI data were obtained on a Siemens 3T Verio scanner
using a 12-channel head coil. Structural anatomic scans were
performed using a T1-weighted sagittal magnetization-
prepared rapid gradient echo (MPRAGE) series (TR: 1900
ms, TE: 2.93ms, 176 sagittal slices, 0.5 × 0.5 × 1mm3 voxels).
To ruling out sub-clinical or other pathologies, we acquired
an interleaved double-echo Turbo Spin Echo sequence pro-
ton density and T2-weighted images (repetition time: 3320
ms, echo time: 10/103ms, matrix: 384 × 384, field of view:
220mm, slice thickness: 4mm, gap: 1.2mm, 50 axial slices).
Functional MRI data were obtained using T2*-weighted,
echo-planar imaging (TR: 3000ms, TE: 30ms, 40 axial slices,
3.906 × 3.906 × 3mm, 150 volumes). For all the sequences
but echo-planar bold, to accelerate fMRI acquisitions and
minimize distortions, the actual EPI uses multiband se-
quences with simultaneous echo refocusing and parallel im-
aging (called Generalized Autocalibrating Partially Parallel
Acquisition, GRAPPA, by Siemens). Functional resting scans
lasted 7 minutes and 30 s, during which participants were
instructed to relax, avoid motion, and keep their eyes closed,
but not to fall asleep.
Functional MRI data preprocessing was carried out

using SPM12 software (http://www.fil.ion.ucl.ac.uk/spm/
) implemented in MATLAB (version R2016b, Math-
Works, Inc., Natick, MA, USA). Data were realigned to
the first volume to correct for head motion using a 6-
parameter rigid body process and resliced by a cubic
spline interpolation. The structural (T1–MPRAGE) and
functional data were coregistered for each participant
dataset. Normalization procedure transformed structural
and realigned EPI images into a common stereotactic

space based on Talairach and Tournoux, resampled by
3 mm on each direction. Finally, the spatially normalized
functional images were smoothed isotropically at 8x8x8
mm., segmented into grey matter, white matter and CSF
using the Tissue Probability Map template, normalized
into standard Montreal Neurological Institute space
using nonlinear transformations and smoothed with a
Gaussian smoothing kernel of 8 mm full-width at half-
maximum.
Diffusion tensor imaging (DTI) was acquired by using

single shot echo-planar imaging, with an 12–channel
head coil (TR 12200 ms, TE 94ms, 72 axial slices, 2 mm
thickness, isotropic voxels), using SPAIR (Spectral At-
tenuated Inversion Recovery) as fat suppression tech-
nique. Images from the same participants and during the
same session were obtained with diffusion gradients ap-
plied along 30 non-collinear directions, effective b values
of 0 and 1000 s/mm2 were used.
We used FSL 6.0 software package (FMRIB Image

Analysis Group, Oxford, England; https://fsl.fmrib.ox.ac.
uk/fsl/fslwiki) to process DTI data. The FSL Diffusion
Toolbox (FDT) was used to correct susceptibility in-
duced distortions [30], eddy currents [31] and motion
artifacts [32], while the brain extraction tool (BET) was
used to create brain masks from the b0 image of each
participant [33]. An automated quality control frame-
work was used to assess diffusion MRI data [34].

fMRI data analysis
After data preprocessing, resting state data of all partici-
pants as a concatenated groups (healthy controls, HC,
and chronic migraine, CM) were analysed using spatial
independent component analysis (ICA) as implemented
in the Group ICA of fMRI Toolbox (GIFT; http://tren-
dscenter.org/software/gift/) to decompose the data into
functional networks that exhibited a unique time course
profile. Two data reduction steps were carried out using
principal component analysis, subject-specific and
group-level steps. Firstly, subject-specific data were re-
duced to 30 components and subject-reduced data were
concatenated across time. Secondly, at group level, data

Table 1 Clinical and demographic data from patients with chronic migraine (CM) and healthy controls (HC)

Healthy Controls
(HC; n = 20)

Chronic Migraine
(CM; n = 20)

Sex (female/male) 13 (65%) / 7 (35%) 14 (70%) / 6 (30%)

Age (years) 28.75 ± 3.89 31.95 ± 9.88

Days with headache/month (number) 23.0 ± 6.8

Disease duration (year) 15.0 ± 13.1

Severity of headache (0–10) 7.6 ± 1.6

Duration of the chronic headache phase (months) 17.1 ± 29.3

Tablet intake/month (number) 3.0 ± 3.2

Gender is expressed as frequency (percentage), other data are expressed as mean ± SD
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were reduced into 20 group independent components
(ICs) with the expectation-maximization algorithm, in-
cluded in GIFT [35]. We propose using standard infor-
mation theoretic methods for estimating the number of
components from the aggregate data set. These methods
make a decision based upon the complexity or informa-
tion content of the data. The number of ICs was estimated
using the minimum description length (MDL) criterion
[36, 37]. In our specific case 20 independent components
(ICs) were indicated to be estimated. Subject-specific
spatial maps and time courses were obtained using the
back-reconstruction approach (GICA) [36].
From the 20 ICs, we identified the relevant RSNs by

applying a previously described procedure [35]. We first
manually confirmed if the peak activation coordinates
were located primarily in grey matter, showing low
spatial overlap with vascular, ventricular, edge regions
corresponding to artefacts [35]. This process resulted in
thirteen meaningful ICs that we sorted into eight func-
tional networks, based on the spatial correlation between
independent components and the template provided by
GIFT Toolbox [35] as follow (Fig. 1 and Table S1): dorsal
attention system (DAS – IC1, IC6 and IC9); sensorimotor

network (SMN – IC2); default mode network (DMN –
IC3, IC11, IC14, IC16); Auditory Network (AN – IC5);
Language Network (LN – IC12); Dorsal Attention Net-
work (DAN – IC13); medial Primary Visual (mPV – IC15)
and salience network (SN – IC19).

Characterization of the BOLD RSNs by Higuchi’s fractal
dimension
Higuchi’s FD [8] is a nonlinear measure of waveform
complexity in the time domain. Discretized functions or
signals can be analyzed as segment of data X (1), X (2),
…, X(N), where N is the total number of samples. From
the starting time sequence, a new self-similar time series
Xk

m can be calculated as:

Xk
m : x mð Þ; x mþ kð Þ; x mþ 2kð Þ;…; x mþ int

N − k
k

� �
k

� �

for m= 1, 2, …, k where m is the initial time; k is the
time interval, k = 1, 2, …, kmax; kmax is a free parameter,
and int(r) is the integer part of the number r.
The length, Lm(k), of each curve Xk

m is calculated as:

Fig. 1 Resting State Networks (RSNs) identified by GIFT. Thirteen spatial maps divided into eight functional networks: 1) dorsal attention system
(DAS: IC1 - rDAS, IC6 - rDAS and IC9 - lDAS); 2) sensorimotor (SMN: IC2); 3) default mode (DMN: IC3 - dDMN, IC11 and IC14 - vDMN, IC16 - aDMN),
4) Auditory (AN: IC5), 5) Language (LN: IC12), 6) Dorsal Attention (DAN: IC13), 7) medial Primary Visual (mPV: IC15), 8) salience (SN: IC19) networks
based on their anatomical view

Porcaro et al. The Journal of Headache and Pain          (2020) 21:112 Page 4 of 11



Lm kð Þ ¼ 1
k

X
i¼1; int N − m

kð Þ
X mþ ikð Þ − X mþ i − 1ð Þkð Þj j � N − 1
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where N is the length of the original time series X and
(N − 1)/{int[(N −m)/k]k} is a normalization factor. Lm(k)
was averaged for all m forming the mean value of the
curve length L(k) for each k = 1, …, kmax as:

L kð Þ ¼

Xk
m¼1

Lm kð Þ

k

An array of mean values L(k) was obtained and the FD
was estimated as follow:
FD = ln(L(k))/ln (1/k) for k = 1, 2, …, kmax.
In practice, the original curve or signal can be divided

into smaller parts with or without overlap, called “win-
dows”. Then, the method for computing FD should be
applied to each window where N should be seen as the
length of the window. In that case, FD values are calcu-
lated for each window, with or without overlap. Individ-
ual FD values can be averaged across all windows for the
entire curve, and the mean FD value can be used as a
measure of curve complexity.
Here, using the single-subject IC time courses for each

RSN, we calculated FD in non-overlapped time windows
of 150 s (corresponding to 50 of our fMRI volumes). The
choice of the free parameter k has a crucial role in FD
estimation. For each window we estimated twenty-four
values of FD for k = 2, …, 25. The value 25 was equal to
half of the samples within our 50 volumes window (i.e.
150 s). kmax is equal to half of the window length the
maximum length that can be chosen. There were three
windows within our 150 volume scans, therefore we esti-
mated three measures of FD at each value of k (e.g. FD2,
FD3, FD4, …., FD24). These three measures were aver-
aged to give one mean value of FD for each k, for each
subject [14, 20, 38]. The process was then repeated for
every subject and every RSN (in Porcaro and colleagues
[39] it is shown in detail the procedure and additional
analyses demonstrating that the FD measurements were
not dependent on the choice of window length or over-
lapping windows).

Diffusion tensor imaging (DTI) analysis
The FSL toolbox DTIFIT fits the pre-processed image
based on a diffusion tensor model to yield FA and MD.
For each subject, two regions of interest (ROI) were cre-
ated, which cover the total left and right thalamus on
each slice. The medial boundaries were identified on
each slice using the Cerebral Spinal Fluid (CSF) as limits,
lateral limits were also verified using FA maps to exclude
the internal capsule. Mean FA and MD values in each

region for every subject were determined by averaging
those voxels in the ROI.

Statistical analysis
Kolmogorov-Smirnov test for normality indicated that
FD values of all the RSNs and the FA and MD values for
left and right thalamus did not differ from a Gaussian
distribution (consistently, p > 0.200).
Repeated-measures analysis of variance (rm-ANOVA)

was performed on the FD values to investigate the inter-
action effect GROUPs × ICs (the two GROUPs as
between-subject factor: CM vs. HC; the thirteen ICs as
within-subjects factor: IC1 vs. IC2 vs. IC3 vs. IC5 vs. IC6
vs. IC9 vs. IC11 vs. IC12 vs. IC13 vs. IC14 vs. IC15 vs.
IC16 vs. IC19). Repeated-measures multivariate analysis
of variance (rm-MANOVA) was carried out on FA and
MD values to explore the interaction effect GROUPs ×
SIDEs (as before, the two GROUPs as between-subject
factor: CM vs. HC; the two SIDEs as within-subjects fac-
tor: left thalamus vs. right thalamus). In both analyses,
univariate ANOVA results were analyzed only if the Wilks’
Lambda multivariate significance criterion was achieved.
The sphericity of the covariance matrix was verified with
the Mauchly sphericity test. In the case of violation of the
sphericity assumption, the Greenhouse–Geisser epsilon ad-
justment was used. Cohen’s d (and its 95% confidence in-
tervals, CI95) was used as measure of effect size.
Pearson’s correlation test was performed between the

FD values for each IC, the FA and MD values for left
and right thalamus and clinical variables (including: se-
verity of headache attacks, ranging 0 to 10; duration of
migraine history, in years; number of monthly days with
headache; duration of the chronic phase, expressed in
months; monthly number of acute medications).
Significance threshold was set at p-value < 0.05.

Results
Demographic characteristics of CM and HC and clinical
features of CM are summarized in Table 1. No signifi-
cant difference emerged between CM and HC in gender
(χ21 = 0.114, p = 0.736) and age (t38 = 1.348, p = 0.186).
In CM, there were not white matter lesions. Mean and

standard deviation of FD values as well as thalami FA
and MD values for CM and HC are reported in Table 2.

Characterization of the BOLD RSNs by Higuchi’s fractal
dimension
The rm-ANOVA model for FD values revealed that the
interaction effect GROUPs × ICs was significant (Wilks’
λ = 0.434, F12,27 = 2.655, p = 0.010). Because the spher-
icity assumption was violated (Mauchly’s W = 0.012, χ277
= 150.861, p < 0.0001), the ε adjustment was adopted in
the univariate test for repeated measure, which resulted
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significant (F12,456 = 2.700, ε = 0.598, p = 0.010). At uni-
variate level, CM differed from HC in FD values of IC1
(F1,38 = 6.018, p = 0.019), IC14 (F1,38 = 5.472, p = 0.025)
and IC16 (F1,38 = 6.751, p = 0.013). Mean and standard
error (SE) for the significant ICs (CM in red and HC in
blue) are shown in Fig. 2. Respect to the HC, higher FD
values were observed in CM for IC1 (rDAS) [d = 0.80
(0.77, 0.82); Fig. 2 – upper panel] and IC16 (aDMN)
[d = 0.84 (0.82, 0.87); Fig. 2 – middle panel]. The oppos-
ite pattern was observed for IC14 (pDMN) [d = − 0.76
(− 0.74, − 0.79); Fig. 2 – bottom panel] with lower FD
for the CM respect to the HC.

Characterization of thalami DTI
The rm-ANOVA model revealed that the interaction ef-
fect GROUPs × SIDEs was not significant for FA values
and for MD values (Wilks’ λ = 0.993, F2,37 = 0.137, p =
0.872). These results indicated that no difference
emerged in FA and MD values of left and right thalamus
between CM and HC.

Correlation analysis between FD and thalami DTI
In HC, the FD of IC1 (rDAS) correlated positively with
that of IC16 (pDMN, F = 6.29, p = 0.023, R2 = 27.01%,
R2 adj = 22.72%). There was no significant linear relation
between the FD values and FA and MD values. In CM,
the FD of IC1 (rDAS) correlated positively with that of
both IC14 (pDMN, F = 4.95, p = 0.04, R2 = 22.55%, R2
adj = 17.99%) and IC16 (aDMN, F = 6.45, p = 0.021, R2 =
27.51%, R2 adj = 23.24%). In CM, the FD values of IC1
(rDAS) correlated negatively with the FA values of right
thalamus (r-Thalamus, F = 22.94, p < 0.001, R2 = 57.43%,
R2 adj = 54.93%); Fig. 3, left panel) and positively with
the MD values of right thalamus (r-Thalamus, F = 5.77,
p = 0.028, R2 = 25.35%, R2 adj = 20.96%); Fig. 3, right
panel). No other significant relation emerged between
the FD values of other ICs and FA and MD values of

thalami. Clinical variables did not correlate with any of
the FD values of ICs and FA and MD values of thalami.

Discussion
In this study, we have investigated how Higuchi’s FD as a
measure of multi-scale signal complexity can be used to
characterize and differentiate the resting BOLD fMRI signal
in HC and CM groups. Linear methods commonly used for
signal analysis, such as the well-known Fast Fourier Trans-
formation (FFT) and wavelet transformation (WT), are
good choices if the analyzed signals are stationary. How-
ever, neurophysiological processes are generally nonstation-
ary and nonlinear by nature. Knowing that FD is an
accurate numerical measure no matter what the properties
(stationary, nonstationary, deterministic or stochastic) of
the analyzed signal, it is reasonable to accept this advantage
over widely used linear methods [14]. Among all the pro-
posed FD algorithms, Higuchi’s methods [8] is considered
to be the most accurate to estimate FD [40].
The key novel results of this fMRI study can be sum-

marized as follows: a) FD is able to characterize haemo-
dynamic activity also from fMRI at rest, b) compared to
HC, CM patients showed a peculiar within networks
complexity estimated by FD, and c) although basic DTI
metrics did not differ between groups, in patients with
CM, right FA and MD were correlated with the FD of
the homolateral DAS.
Recently, the application of fractal analysis was ex-

tended to the understanding of the underlying dynamics
of the micro [21] and macro [22, 23] structure of the
brain. Some researchers calculated FD from integrated
BOLD signals obtained from resting state functional
MRI, but using a voxel-based approach [22, 23]. Here
we showed, for the first time, that Higuchi’s fractal ana-
lysis can be estimated also from resting state data of dif-
ferent networks identified using group independent
component analysis.
Despite the appropriate interpretation of such FD

metric remains for the most part incomplete, loss or
gain in complexity in brain activity means that the
neural system of the brain is less or more flexible and/or
efficient in information processing [41]. The complexity
of the brain is the result of the interaction between a
huge number of brain cells or neuronal structures cor-
relating at long-range and operating at multiple dimen-
sional levels such as space and time. Nonetheless, the
complexity of the brain activity further depends on feed-
back/feedforward information’s flow from the periphery.
This level of complexity is extremely variable, since it
might increase or decrease depending on the change re-
quired of the intrinsic dynamic supporting the measured
process, and, furthermore, according to age and path-
ology [41]. In our CM patients, we observed that two

Table 2 Mean and standard deviation (in brackets) for the
bilateral thalami fractional anisotropy (FA) and mean diffusivity
(MD) together with fractal dimension (FD) values for IC1, IC14
and IC16

HC

Left Right FD

FA MD FA MD IC1 IC14 IC16

0.34 119 0.33 122 1.840 1.901 1.855

(0.03) (12.7) (0.02) (10.1) (0.06) (0.05) (0.06)

CM

Left Right FD

FA MD FA MD IC1 IC14 IC16

0.34 119 0.33 121 1.883 1.853 1.899

(0.03) (11.1) (0.03) (12.8) (0.05) (0.08) (0.05)
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cortical networks, DAS and DMN, showed significant
FD differences compared to HC.
The default mode brain network (DMN), most active

during internally focused tasks, involves several regions in-
cluding the medial prefrontal cortex (MPFC), posterior
cingulate cortex, precuneus (PCu), and inferior parietal
lobules (IPLs) [42]. It was previously shown that DMN
can be decomposed in different interacting subnetworks
in which anterior or posterior areas can be predominantly

included [43]. Coherently, here we identified two subnet-
works of the DMN with a significant different FD: the an-
terior which prominently includes MPFC, and a posterior
DMN which includes PCu and IPLs.
Several studies in episodic migraine concordantly

found that DMN is less connected between attacks of
migraine without aura [44, 45]. Whereas, the intrinsic
functional connectivity of the DAS was reduced [46] in
episodic migraine interictally and less connected with

Fig. 2 Haemodynamic activity characterization at rest by Fractal Dimension. For each panel (Upper, Middle and Bottom) – a) Spatial maps of
the IC obtained by GIFT toolbox representing the rDAS, aDMN and vpDMN. b) Grand average and standard error for the FD values (k = 12) are
shown for both groups HC (blue) and CM (red). c) Haemodynamic activity of the IC is shown. Upper panel – Shows the results obtained for IC1
representing rDAS. Middle panel – Shows the results for IC 16 representing aDMN. Bottom panel – Shows the results for IC 14 representing
vpDMN. All images have been coregistered into the Montreal Neurological Institute (MNI) space. The numbers above each image refers to the Z
coordinate in MNI space

Porcaro et al. The Journal of Headache and Pain          (2020) 21:112 Page 7 of 11



the DMN [9]. Key regions of the DAS are bilateral frontal
eye fields and the bilateral superior parietal gyrus/intra-
parietal sulcus. They are responsible for top-down cogni-
tive selection of relevant sensory information, multimodal
stimulus processing – with a preference for the visual ones
– and preparation of responses or action selection [47].
Here, we observed higher FD in DAS and aDMN – cov-

ering the anterior subsystem of the DMN – intrinsic func-
tional connectivity, and lower complexity in pDMN –
covering the posterior subsystem of the DMN – in CM
patients compared to HC. Moreover, we found positive
correlations between FD values of DAS and DMN in both
groups of participants, but more consistently in CM than
in HC, since the former was evident both for aDMN and
pDMN, not just for the pDMN as for the latter.
It is well-known that DMN and DAS, devoted to intern-

ally and externally processing of goal-directed cognition
respectively, are separate and functionally competitive net-
works [47]. Resting-state data systematically showed that
spontaneous DMN activity is anticorrelated to that of
DAS, the former being deactivated by attention-
demanding tasks [48]. Nonetheless, several studies showed
that when the context enhances cognitive loads such as

during pain demanding attention – viewed as the focusing
of cognitive resources on a specific stimulus [49] –, the
DMN is more intensely activated, rather than deactivated
[50], and that acute and chronic pain conditions lead to
the appearance of a strong correlation between DMN and
DAS [51]. These findings are supported by our previous
observation in the same group of subjects of a stronger
correlation between DMN and DAS in CM patients [28].
However, in contrast with the higher complexity of func-
tional connectivity we found within DAS and the aDMN,
we discovered a lower fractal dimensionality within the
pDMN of our CM patients. We know from analyses
employing a graph theoretical approach that PCu, a hub
of the pDMN [52], plays a role as connector area between
the DAS and DMN [53], and that its dysfunction could
contribute to the emergence of functional brain disorders
[54]. Therefore, we cannot exclude that a low dimension-
ality, i.e. less efficiency in information processing, within
the pDMN could explain the lack of anticorrelation be-
tween DAS and DMN in response to chronic headache.
Finally, we postulate that the pattern of connectivity

and fractal dimensionality presently observed can be the
result of the inefficiency of the brain of chronic

Fig. 3 Correlation analysis between FD and thalami values. Pearson’s correlation analysis between FD, right (up row, significant correlation) and
left (bottom row, no correlation) for fractional anisotropy (FA, left column) and right mean diffusivity (MD, right column) values
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migraineurs to reserve cognitive resource to pain, i.e. to
cope with the chronic recurrence of headache, favouring
internal mentation process.
The analysis of microstructural data does not reveal a

significant difference between the metrics of diffusivity of
patients and those of HC. This is the first study exploring
the microstructure of the thalami in CM treatment-free
and without a history of medication overuse. Previous
neurophysiological studies showed sensitization of visual
and somatosensory cortical responses with normal
thalamo-cortical loop activation and lateral inhibition in
CM. Since this electrophysiological pattern is quite similar
to that derived from recordings of ictal episodic migrai-
neurs [3, 55], it was hypothesized that CM is a condition
of “never-ending migraine attack”. Coherently, here we
found diffusive metrics within the normal ranges in CM,
quite similar to those obtained during episodic migraine
attacks [10]. These results are in contrast with the abnor-
mal microstructural results obtained in episodic migraine
between attacks [9]. Nonetheless, despite these normal re-
sults, we found that the more the FD of rDAS the lowed
the FA and the higher the MD of right thalamus. Again,
similar correlation was previously detected by the help of
clinical neurophysiology. In a group of patients with de-
novo CM, the higher the amplitude of the somatosensory
thalamocortical loop activity, the higher the primary cor-
tical activation in CM and in episodic migraine during an
attack, but the same correlation was absent in HC [3].
Whether the correlation between the thalamic microstruc-
ture and the complexity of the cortical network is driven
primarily by the increase efficiency in cortical information
processing, or is secondary to sensitization of the third-
order thalamic neurons receiving convergent input from
the peripheral ophthalmic division of the trigeminal nerve
remains to be determined. Our study has important limi-
tations. Firstly, our sample is relatively low, although stat-
istical analysis gives clearly robust significant results. In
the future, it will be important to confirm these results in
a larger population of subjects. Secondly, we did not verify
cognitive performances and we did not quantitatively
score mood and anxiety in our subjects. It has previously
shown in fact that bilateral PCu is deactivated during an-
ticipatory anxiety or pain expectation [51].

Conclusion
Here, we probe that Higuchi’s FD can be used to esti-
mate complexity within networks activity extracted from
the MRI at rest using an independent component ana-
lysis. The application of this analysis on CM patients
demonstrated that an aberrant increase in complexity
within the DAS and aDMN and a lower complexity
within the pDMN compared to HC. This abnormal pat-
tern of FD within DAS and DMN may reflect disruption
of cognitive control of head pain. Normal microstructure

of the thalamus and its positive connectivity with the
cortical networking may be yet another evidence in sup-
port of CM as a never-ending migraine attack.
Further studies are needed to verify whether pharma-

cological or non-pharmacological migraine prevention
treatments are able to modulate the cortical networking
fractal dimensionality, in parallel with the reduction in
the frequency of attacks.
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