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Abstract

Pituitary adenylate cyclase activating polypeptide (PACAP) is an ubiquitous peptide involved, among others, in
neurodevelopment, neuromodulation, neuroprotection, neurogenic inflammation and nociception. Presence of
PACAP and its specific receptor, PAC1, in the trigeminocervical complex, changes of PACAP levels in migraine
patients and the migraine-inducing effect of PACAP injection strongly support the involvement of PACAP/PAC1
receptor in migraine pathogenesis. While antagonizing PAC1 receptor is a promising therapeutic target in migraine,
the diverse array of PACAP’s functions, including protection in ischemic events, requires that the cost-benefit of
such an intervention is well investigated by taking all the beneficial effects of PACAP into account. In the present
review we summarize the protective effects of PACAP in ischemia, especially in neuronal ischemic injuries, and
discuss possible points to consider when developing strategies in migraine therapy interfering with the PACAP/
PAC1 receptor system.
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Introduction
PACAP is an ubiquitous peptide discovered almost three
decades ago [1], and it has been described to be involved
in neurodevelopment, neuromodulation, neuroprotec-
tion, neurogenic inflammation and nociception [2]. It
belongs to the vasoactive intestinal peptide (VIP)/gluca-
gon/growth hormone releasing factor/secretin superfam-
ily [2] and is encoded by the ADCYAP1 gene, located on
chromosome 18, which expresses a proprotein that is
further processed into multiple mature peptides. Alter-
native splicing results in multiple transcript variants,
including two forms that contain either 27 or 38 amino
acids (PACAP27 and PACAP38). Since in mammals
PACAP38 is the most prevalent form [3], in this review
PACAP38 will be referred to simply as PACAP unless
stated otherwise.
PACAP exerts its functions through the activation of

three different G-protein coupled receptors (GPCRs):
VPAC1, VPAC2 and PAC1. While VPAC1 and VPAC2
receptors are coupled to Gs proteins and show similar
affinity for VIP, the PAC1 receptor has a 100-fold select-
ivity for PACAP27 and PACAP38 over VIP, leading to

the activation of adenylate-cyclase and phospholipase C
signaling transduction pathways [4].
In the central nervous system (CNS), PACAP has been

described in the pituitary, thalamus, hypothalamus, hippo-
campus, locus coeruleus, periaqueductal grey area, the dor-
sal horn of the spinal cord and in astrocytes [5–14]. Of
special interest, PACAP is expressed in the trigeminal nu-
cleus caudalis (TNC) and trigeminal ganglia [15], which
could suggest a possible role for PACAP in migraine
pathogenesis. In rats, injection of PACAP into the paraven-
tricular nucleus of the hypothalamus increases the activity
of the TNC, which can be reverted by administration of
the PAC1 receptor antagonist [16], and intrathecal injec-
tion of PACAP induces hyperalgesia [8]. PACAP plasma
levels in migraineurs are elevated during a migraine attack,
in comparison with the interictal levels [17]. Most import-
antly, if injected peripherally to migraineurs, PACAP is able
to induce an immediate headache in 90% of the cases, that
is followed by a delayed migraine-like headache in almost
60% of the subjects; conversely, only 15% of the healthy
controls experience the delayed migraine-like headache
[15]. These findings are similar to those obtained after per-
ipheral administration of calcitonin gene-related peptide
(CGRP) [18]. Interestingly, PACAP is a weaker dilator of
the human meningeal artery when compared to VIP [19].
Since VIP was earlier reported not to induce migraine-like
headaches [20], this could suggest that the role of PACAP
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in migraine is probably through modulation of the trigemi-
nocervical complex via the PAC1 receptor.
In view of the suggested role of PACAP, but not VIP, in

migraine, an antibody against the PAC1 receptor (AMG
301) has been developed for the treatment of migraine
(Clinical trials identifier: NCT03238781). In preclinical
studies, AMG 301 has been shown to inhibit stimulus-
evoked nociceptive activity in the TNC and the results are
comparable to the inhibition observed with sumatriptan,
supporting the role of PAC1 receptor in migraine patho-
physiology. However, it is important to consider the ubi-
quitous nature of PACAP and its receptors, since they
have also been described to be widely expressed in the
periphery, such as in the thyroid and parathyroid glands,
lungs, pancreas, liver, colon, stomach and blood vessels [3,
11, 21–25]; thus they participate in several respiratory,
gastrointestinal, reproductive and cardiovascular (patho)
physiological processes [2] and, as it will be discussed, play
a significant role in the homeostatic responses to ischemic
events [26–32], Table 1.

Review
PACAP in brain ischemia
PACAP has been shown to be neuroprotective in vitro in
different neuronal cultures against various toxic insults
and in models of neuronal injuries in vivo [33, 34]. Numer-
ous in vivo data have been published showing its protective
actions in cerebral ischemia [33, 35]. The first proof for the
in vivo neuroprotective effect came from a rat global ische-
mia study, where intravenous or intracerebroventricular
(icv) PACAP administration reduced hippocampal neur-
onal loss [36]. This was achieved via suppression of JNK
and p38, while stimulation of ERK activity [37–39]. These
observations were followed by studies demonstrating that
PACAP was also effective in transient and permanent focal
ischemia in rats and mice induced by middle cerebral ar-
tery occlusion (MCAO) [27, 40–44].
Subsequent studies provided further details on the neu-

roprotective mechanisms. Anti-apoptotic and anti-
inflammatory actions seem to be the main protective
mechanisms in PACAP’s actions in rat and mouse models

Table 1 Summary of the protective effects of PACAP in different ischemic models, human diseases and changes of PACAP levels
and PAC1 receptor expression in ischemic conditions

Ischemic models Lesion size Degree of
functional deficit

PACAP level PAC1 receptor
expression

Cerebral
ischemia

Global ischemia in mouse
and rat: 4VO, BCCAO

↓ [48, 72] NA ↓ PACAP 38 [64]- in CA1,
[68]-in hippocampus
granule cells
↑PACAP 38 [72]- in
hippocampus

↓ [68, 70]- in hippocampus,
[69]- in hippocampal astrocytes

Focal ischemia in
mouse and rat: MCAO

↓ [27, 36, 40–47,
58, 67, 71]

↓ [27, 46, 47] ↑ PACAP 38 [56]- in
brain, [67]- in cortical
pyramidal cells
↓ PACAP 38 [58]- in
cortex, striatum, subcortical
area

↑[65]- in cortex, caudate,
putamen, [67]- in neurons
and astrocytes

MCAO+BCCAO in rat ↓ [55] ↓ [55] ↑ PACAP 38 [55]- in cortex N/A

Stroke, hemorrhages
in human

N/A N/A ↑ PACAP 38 [55]- penumbral
region, [69]- intracerebral,
[70]- subarachnoid]

N/A

Retinal
ischemia

Transient ischemia: high
intraocular pressure

↓ [83] N/A N/A N/A

Permanent ischemia:
BCCAO

↓ [76, 81, 82, 87,
88, 90]

↓ [81] N/A N/A

Cardiac
ischemia

Ischemia reperfusion
in rat and human

↓ [94, 95] N/A ↓ PACAP 38 [91]- in stellate
ganglion
↑ PACAP 38 [91]- in heart
↑ PACAP38-Li, PACAP 27-Li
[92]- in heart

↑ [92]

Liver
ischemia

Ischemia reperfusion
in mouse

↓ [96] N/A ↑ PACAP 27/38 [96] ↑ [96]

Intestinal
ischemia

Ischemia reperfusion
in mouse and rat

↓ [97, 98] N/A ↓ PACAP 38 [97] N/A

Kidney
ischemia

Ischemia reperfusion in
mouse, rat, and in human

↓ [100–104] N/A N/A N/A

Abbreviations: MCAO middle cerebral artery occlusion, 4VO 4 vessel occlusion, BCCAO bilateral common carotid artery occlusion, -Li -like immunoreactivity, N/A not
applicable, not measured

Reglodi et al. The Journal of Headache and Pain  (2018) 19:19 Page 2 of 9



of cerebral ischemia. PACAP decreased apoptosis in the
ischemic penumbra [45], inhibited expression of bcl-2-
associated death promoter, caspase-3, macrophage inflam-
matory protein-1alpha, inducible nitric oxide synthase2,
tumor necrosis factor-(TNF) alpha mRNAs and increased
ERK2, bcl-2 and IL-6 [40, 41, 46]. Decreased inflammatory
response was also found after post-stroke PACAP-produ-
cing stem cell transplantation, where numerous chemo-
kines as well as TNF, NFkappaB and IL-1 decreased [47].
In brain cortical neurons subjected to oxygen-glucose
deprivation and reoxygenation, PACAP induced neuronal
protection by both direct actions through PAC1 receptor,
and indirect pathways via neurotrophin release, activation
of trkB receptors and attenuation of neuronal growth in-
hibitory signaling molecules p75NTR and Nogo receptor
[41]. In addition, PACAP induced apurinic/apyrimidinic
endonuclease APE1 in hippocampal neurons that can be
an additional factor reducing DNA stress and hippocampal
CA1 neuronal death in global ischemia [48]. In mouse
MCAO, several genes were affected in the ischemic core
and penumbra after PACAP treatment [49–52]. Among
the upregulated genes was IL-6, which was strongly in-
duced during the critical first 24 h, suggesting a relation-
ship between PACAP and IL-6 in accordance with
previous findings by Ohtaki and co-workers [40]. Several
other cytokines and growth factors were altered in a
region-specific and time-dependent fashion after post-
ischemic PACAP treatment, such as brain derived neuro-
trophic factor [50, 51]. Whether alterations of these factors
are consequences of PACAP reducing infarct volume by
other mechanisms or represent a causative factor is not
known at the moment. Only in case of IL-6, it has been
proven that PACAP failed to improve ischemic lesion in
IL-6-deficient mice, showing the causative role of IL-6 in
PACAP-mediated neuroprotection in mice [40]. Numer-
ous further factors playing a role in neuronal defense,
axonal growth and development were also modified after
ischemia [52]. A relationship between hypoxia inducible
factor (HIF) and PACAP was described in several studies
in different experimental paradigms [53–55]. Under in
vitro and in vivo hypoxic conditions, HIF1-alpha activation
upregulated PACAP, which in turn activated PAC1 recep-
tor [56]. Although PACAP reduced HIF1-alpha expression
in a model of diabetic retinopathy 2 weeks after the treat-
ment, bone marrow-derived stem cells homing into the is-
chemic brain was also facilitated by a recently described
HIF1-alpha-activated PACAP38-PAC1 signaling process
[55]. A detailed time-dependent analysis of PACAP’s effect
on cerebral HIF1 expression could clarify the role of this
pathway in PACAP-induced neuroprotection in ischemia.
Analogs of PACAP were also tested in focal ischemic
models. In a study of ischemia/reperfusion injury, a potent
metabolically stable PACAP38 analog [acetyl-(Ala15, Ala20)
PACAP38-propylamide] led to the same degree of

protection as native PACAP38 [46]. This is an important
finding, as one of the limitations of PACAP’s therapeutic
use is its poor stability. However, according to these data
enhancing its plasmatic half-life did not lead to an increase
of its neuroprotective potential [46], but analogs might
have less vasomotor side effects, as described in another
study [57].
As far as functional recovery is concerned, PACAP is

able to improve functional deficits in association with
the morphological amelioration in stroke models. In rat
permanent focal cerebral ischemia, PACAP improved
certain sensorimotor deficits, such as reaction times to
body surface touch [27]. Another study further sup-
ported this in a transient MCAO, evaluating neuro-
logical impairment by degree of limb flexion, grasping
and symmetry of movements [46]. In a permanent focal
ischemia model, PACAP-producing stem cells trans-
planted icv 3 days after stroke promoted functional re-
covery even when given beyond the therapeutic window
for structural recovery [47].
PACAP is known to cross the blood-brain barrier

(BBB), but it is still questionable whether the rate is suf-
ficient to lead to effects in the brain under physiological
or pathological conditions [2, 38]. Although ischemic
conditions change region-specific crossing, it is sug-
gested that the passage is sufficient enough to induce
neuroprotection in ischemic brains [58]. Antisenses in-
hibit efflux pumps of the BBB, and could inhibit
PACAP27 efflux and reduce the infarct size in mouse
focal ischemia [59]. Regarding changes in cerebral blood
flow, in some studies PACAP increased cerebral blood
flow in ischemic conditions, while in others no change
or even decrease was found [27, 46, 60]. PACAP has po-
tent vasodilatory effects, which can also be included in
the pathomechanism of migraine [61–63]. However,
given the contradictory data on cerebral blood flow after
PACAP treatment, it remains unknown at the moment
whether this effect plays a role in post-ischemic
neuroprotection.
The role of endogenous PACAP was suggested by up-

regulation of PACAP signaling in different ischemia
models and from knockout studies (Table 1). In a gerbil
model of global ischemia, decrease in PACAP expression
was followed by an increase 5 days later. This was ac-
companied by increases in PAC1 receptor expression in
the vulnerable CA1 region, in contrast to the more re-
sistant CA3 area, where PACAP expression did not
change [36, 64]. Upregulation of PAC1 receptor could
also be observed after focal ischemia [65, 66]. A massive
upregulation of PACAP was found in peri-infarct regions
[67]. In a rat global ischemia model, moderate PAC1
mRNA decrease was observed throughout the hippo-
campus, while granule cells showed increased PACAP
expression [68]. It was suggested that the altered PACAP
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and PAC1 receptor expression might play a role in regu-
lated neurogenesis after stroke [68]. In mouse hippo-
campal astrocytes, PAC1 receptor expression was
increased 7 days after stroke, suggesting an important
role of PACAP in reactive astrocytes [69, 70]. Further
evidence for the endogenous protection by PACAP came
from studies using PACAP deficient mice. Hetero- and
homozygous PACAP knockout animals had increased
infarct volume with increased edema formation and
more severe neurological deficits after MCAO, and these
could be ameliorated by PACAP injection [40, 71]. Fur-
thermore, cytochrome-c release was higher, while mito-
chondrial bcl-2 was lower in mice lacking PACAP. It
was also suggested that these protective effects could be
mediated in part by IL-6 [40]. Endogenous PACAP also
promotes hippocampal neurogenesis after stroke, as pro-
liferation of neuronal stem cells in the subgranular zone
of the hippocampus was found to be increased in wild
type mice, but not in PACAP heterozygous animals [72].
The few available human data also support that

PACAP might play a role in ischemic neuronal condi-
tions. It was hypothesized that the elevated blood
PACAP levels may reflect an increased leakage into cir-
culation or an overproduction of PACAP as a patho-
logical response to the loss of neural tissue in the CNS
and it might be associated with the neuroprotective ef-
fects of the neuropeptide [73]. Plasma PACAP concen-
trations were higher in patients after acute spontaneous
basal ganglia and aneurysmal subarachnoid hemorrhages
than in healthy control subjects [73, 74]. Positive associ-
ation was shown between PACAP levels and neuro-
logical score, as well as with hematoma volume.
Patients, who died within the first week after admission,
had higher PACAP levels and overall survival times were
shorter in individuals with high PACAP concentrations
[73, 74]. It is suggested that PACAP could be a good
prognostic predictor in hemorrhage patients. These
studies suggest that PACAP can be an independent pre-
dictor of survival and a potential prognostic biomarker
of brain hemorrhage.

PACAP in retinal ischemia
PACAP is considered to be a potent neuroprotective pep-
tide with potential therapeutic use also in retinal diseases
[34, 75–79]. Similarly to models of cerebral ischemia, pro-
tective effects have been described in animal models of
retinal ischemia. Intravitreal injection of PACAP38 or
PACAP27 following bilateral common carotid artery oc-
clusion in rats preserved the thickness of all retinal layers
and reduced cell loss in the ganglionic layer. Immunohis-
tochemistry demonstrated that PACAP rescued fully or
partially several retinal cell types from ischemia-induced
damage. The PACAP antagonist PACAP6–38 could block
these protective effects [76, 80]. Electroretinography

showed that ischemia caused functional loss in the retina,
whereas PACAP treatment resulted a preserved retinal
function [81]. Endogenous PACAP had similar protective
effects, as knockout mice were more susceptible to retinal
ischemic injury [82]. Efficacy of PACAP was also shown in
another retinal ischemia model induced by high intraocu-
lar pressure, which could be blocked by a cAMP antagon-
ist [83]. Testing possible therapeutic effects of various
PACAP fragments and analogues, and three related pep-
tides (VIP, secretin, glucagon) revealed that the most ef-
fective forms were PACAP38 and PACAP27, while the
other fragments had either no effects or slight antagonistic
effects [84, 85]. Related peptides had no effect except for
VIP, which was retinoprotective at concentrations ten
times higher than it is required for PACAP [84, 86]. Re-
cent results have shown that PACAP38 and 27 are able to
cross the ocular barriers and exert retinoprotective effects
in ischemia even when given in form of eye drops [87, 88],
providing the basis for an easy route of future therapeutic
use.
Examining the protective mechanisms in retinal hypo-

perfusion, several studies have revealed possible signal-
ing pathways resulting in neuroprotection. Another
study investigated possible receptorial mechanisms. All
three PACAP receptors (PAC1, VPAC1, VPAC2) are
expressed in the retina, with PAC1 receptor showing
dominant role in the retinoprotective effects [34]. Our
research group confirmed the involvement of PAC1 re-
ceptors in the PACAP-induced retinoprotection using a
selective PAC1 receptor agonist maxadilan in permanent
common carotid artery ligation. Maxadilan rescued ret-
inal layers from ischemia-induced degeneration and de-
creased expression of cytokines such as CINC-1, IL-1α,
and L-selectin [89]. In another study, intravitreal PACAP
increased the activation of the protective Akt and ERK1/
2, while decreased both p38MAPK and JNK activation
in hypoperfused retinas. After ischemia several cytokines
were overexpressed (CINC, CNTF, fractalkine, sICAM,
IL-1, LIX, Selectin, MIP-1, RANTES and TIMP-1), but
attenuated by PACAP38 [90]. Moreover, the neuropep-
tide further increased vascular endothelial growth factor
and thymus chemokine levels. These results suggest that
PACAP can ameliorate hypoperfusion injury involving
Akt, MAPK pathways and anti-inflammatory actions.

PACAP in cardiac and other peripheral ischemic
conditions
The cytoprotective effects of PACAP in ischemic condi-
tions have also been observed outside the nervous sys-
tem in various peripheral organs. Expression of PACAP
mRNA increased after myocardial infarction in mice,
and immunohistochemistry revealed a gp130-dependent
elevation in PACAP38 in the stellate ganglion [91].
PACAP38 immunoreactivity was not detected in sham
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hearts, but was high in the infarct 3 days after infarction,
suggesting an important role in cardiac and neuronal re-
modeling after ischemia-reperfusion [91]. Human data
also propose the involvement of PACAP in cardiac is-
chemia: PACAP38- and PACAP27-like immunoreactivity
was higher in ischemic heart diseases than in valve dis-
orders [92]. Differences were also observed between is-
chemic and non-ischemic heart failure patient plasma,
suggesting that PACAP might play an important role in
the pathomechanism and progression of ischemic heart
failure and it might be a potential biomarker of cardiac
diseases [93]. A few available reports showed that
PACAP was protective in cardiomyocyte ischemia in
vitro [94, 95]. Cultured cardiomyocytes, exposed to is-
chemia/reperfusion, reacted to PACAP with increased
cell viability and decreased apoptosis. PACAP induced
the phosphorylation of Akt and protein kinaseA, while
inactivated Bad, a pro-apoptotic member of the Bcl-2
family. Furthermore, PACAP increased the levels of Bcl-
xL and 14–3-3 proteins, both of which promote cell sur-
vival, and decreased the apoptosis executor caspase-3
cleavage [94]. In another study, cardiomyocytes were ex-
posed to brief preconditioning ischemia followed by 2 h
ischemia and 4 h reperfusion. PACAP treatment could
again increase cell viability and decrease cell death, and
further reduced the level of cleaved caspase-8 under in
preconditioning [95].
Numerous studies have provided evidence for the pro-

tective effects of PACAP in several other peripheral or-
gans, like small intestine, kidney and liver. Liver
ischemia/reperfusion injury triggered the expression of
intrinsic PACAP and its receptors, whereas the hepato-
cellular damage was exacerbated in PACAP deficient
mice [96]. Both PACAP27 and PACAP38 protected
against hepatic ischemia, accompanied by decreased
serum alanine aminotransferase levels, more preserved
hepatic morphology with less cell death signs and re-
duced inflammation [96]. In small intestinal ischemia/re-
perfusion injury PACAP was protective both
exogenously and endogenously. PACAP deficient mice
reacted with more severe tissue damage than wild types
[97, 98]. Preservation of morphological structure of
small intestine after ligation of mesenteric artery
followed by reperfusion was accompanied by decreased
oxidative stress and increased anti-oxidant capacity in
PACAP-treated animals [97, 98]. Similar results have
been obtained in the kidney [99]. Both homo- and het-
erozygous PACAP knockout mice showed increased in-
jury after renal artery clamping [100, 101]. Cell cultures
isolated from wild type and PACAP deficient mice
showed that cells from PACAP deficient mice had higher
vulnerability to in vitro hypoxia [102]. In vivo, knockout
mice also displayed increased tissue damage accompan-
ied by increased inflammatory cytokine expression,

decreased anti-oxidant capacity and increased expression
of apoptotic markers [100, 101]. When PACAP was given
as an exogenous treatment in rat renal ischemia/reperfu-
sion injury, PACAP-treated animals had decreased mortal-
ity and inflammatory status, better preserved
morphological structure in all tested histological pa-
rameters and decreased apoptotic and cytokine activ-
ity [103, 104]. All these results show that PACAP has
protective effects in ischemic injuries not only in the
nervous system, but also in several peripheral organs
suggesting a general anti-ischemic protective role of
this neuropeptide.

Discussion
As discussed above, several in vitro and in vivo studies
have shown that PACAP has protective effects in the
CNS, as well as in peripheral organs during ischemic in-
juries [26, 31, 33, 34, 40, 41, 43, 45, 46, 89, 91, 95, 97,
101]. These actions are thought to be mediated via anti-
apoptotic and anti-inflammatory mechanisms through
direct activation of PAC1 receptors and indirect path-
ways [34, 41, 89]. Therefore, PACAP and the PAC1 re-
ceptor seem to be a promising therapeutic target for
ischemic conditions [46], as well as for several neurode-
generative disorders [28, 30, 33].
Conversely, studies have shown expression of PACAP

and PAC1 receptor in the TNC [15] and elevated
PACAP plasma levels during migraine attacks [17]. Fur-
thermore, the peripheral injection of PACAP induces
migraine-like headaches to migraineurs [15]. This has
led to the development of AMG 301, an antibody against
the PAC1 receptor for the treatment of migraine, that is
currently in Phase II (Clinical trials identifier:
NCT03238781). As mentioned above, the PAC1 receptor
was proposed as the most relevant PACAP receptor in
migraine partly because this is stimulated exclusively by
PACAP and not, as the VPAC1 and VPAC2 receptor,
also by VIP. This latter peptide failed to induce
migraine-like attacks in migraine patients [20]. Notwith-
standing the evidence supporting a role for the PAC1 re-
ceptor in migraine, it cannot be completely ruled out
that the differences in migraine-generation properties of
PACAP and VIP are rather due to their pharmacokinetic
characteristics (difference in half-life) than due to differ-
ences in their pharmacodynamic action. Thus, we feel
that it is too early to exclude VPAC1 and VPAC2 as add-
itional potential antimigraine targets.
Certainly the prophylactic treatment of migraine with

AMG 301 seems promising; however, it is important to
have in mind that migraineurs present an increased risk
of ischemic stroke [105–109] and that PACAP and
PAC1 play a key role in the homeostatic responses to is-
chemic conditions. Therefore, the question remains
whether a mild ischemic event could transform into a
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full-blown infarct when PACAP’s actions are blocked;
similar concerns have been raised with the novel CGRP
(receptor)-antibodies [109, 110]. Although the benefits
of blocking CGRP seem greater than the drawbacks,
more research is warranted. Similarly, concerning block-
ade of the PAC1 receptor, further studies are required to
determine the possible side effects of long-term blockade
of PAC1 signaling, and to study whether the activation
of indirect pathways involved in the protective actions of
PACAP is sufficient during ischemic events [111].
Further, it remains to be established whether the same

patients that show a positive therapeutic response to
CGRP (receptor)-antibodies will have a positive response
to PAC1 antibodies, or that both types of medications
are most effective in a separate population of migraine
patients, depending on the peptide that is most predom-
inant in their individual migraine pathophysiology. In
view of the role of both CGRP and PACAP in preserving
homeostasis under ischemic conditions, it remains of
particular interest whether these antimigraine drugs
could be combined, or whether simultaneous use would
augment their side-effect potential.

Conclusions
In conclusion, PAC1 antibodies may present a valuable
new tool in the treatment of migraine. Larger clinical
studies will shed more light on the efficacy of these anti-
bodies in migraine. The cardiovascular safety should be
investigated in both preclinical models as well as in rele-
vant patient populations.
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