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Abstract Abnormal electroencephalography (EEG) in

migraineurs has been reported in several studies. However,

few have evaluated EEG findings in migraineurs during a

time period when neither the last attack nor the next attack

may interact with the results. We, therefore, compared

interictal EEG in migraineurs and headache-free subjects

with a design controlled for interference by pre-ictal chan-

ges. Pre-ictal EEG findings in the painful cranial side during

the next attack after registration were also investigated.

Correlations between clinical variables and EEG are repor-

ted as well. Interictal EEGs from 33 migraineurs (6 with and

27 without aura) and 31 controls were compared. Absolute

power, asymmetry and relative power were studied for delta,

theta and alpha frequency bands in parieto-occipital, tem-

poral and fronto-central areas. EEG variables were corre-

lated to attack frequency, headache duration, attack duration,

pain intensity, photo- and phonophobia. Compared with

controls, migraineurs had increased relative theta power in

all cortical regions and increased delta activity in the painful

fronto-central region. Absolute power and asymmetry were

similar among groups. In age-adjusted analyses, headache

intensity correlated with increased delta activity. In this

blinded controlled study, we found globally increased rela-

tive theta activity in migraineurs. A slight interictal brain

dysfunction is probably present between attacks.

Keywords Migraine � Headache � Hemicrania �
QEEG � Delta � Theta

Introduction

Migraine patients are hypersensitive to various stimuli even

outside the headache attacks [1–6]. The underlying cause for

such symptoms is still unknown. Although positron emission

tomography (PET), magnetic resonance imaging (MRI) and

blink reflex studies support the presence of a ‘‘migraine

generator’’ located in the brainstem [7–9], the presence of

visual evoked potentials (VEP) habituation dysfunction [10],

transcranial magnetic stimulation threshold changes and

somatosensory evoked potential abnormality suggest that

there is also a thalamic or cortical dysfunction [11]. This

notion of a cortical dysfunction in migraine is also supported

by blinded electroencephalography (EEG) studies and con-

trolled quantitative EEG (QEEG) studies showing that EEG

abnormality rates are higher in migraineurs compared to

headache-free controls [12–15]. However, the results from

QEEG studies in migraine are not consistent and partly

contradictory [16–19]. The cause for this disagreement has

not been clarified, but many QEEG studies did apparently not

take into account that some patients were in a pre-attack

phase during recording [20–28].

Pre-ictal neurophysiological changes have indeed been

found with QEEG [29] as well as with other methods

[30–38]. For this reason, it is important to re-evaluate EEG
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findings in migraineurs during a time period when neither the

last attack nor the next attack may interact with the results.

Subclinical, possible ischemic, white matter lesions [39–

43] and grey matter changes [44, 45] have also been

described in migraine patients. These findings correlate

with attack frequency [40, 44] and disease duration [45].

Because cerebral ischaemia causes increased theta and

delta and decreased alpha activity [46–48], it may be

interesting to study whether interictal cortical function also

correlates with migraine symptoms and severity.

Our aim was accordingly to estimate delta, theta and

alpha EEG band power in controls and in migraineurs in a

true interictal period, where both the time from the previ-

ous attack and the time to the following attack are con-

trolled. We also evaluated interictal EEG findings in the

symptomatic hemisphere, and the associations between

interictal EEG band power and measures of headache

duration, frequency, intensity, phono- and photophobia in

migraineurs.

Patients and methods

Migraine patients were recruited by a newspaper adver-

tisement. After telephone screening by nurses trained in

headache research, 52 subjects were examined by a neu-

rologist. The eligible participant was aged 18–65 with 2–6

migraine attacks per month during the previous 3 months.

The diagnosis of migraine was made according to the

International Headache Society’s classification of Head-

ache Disorders 2nd Edition [49], using ICHD-II codes 1.1

(migraine without aura) and 1.2.1 (typical aura with

migraine headache). Healthy control subjects were recrui-

ted among blood donors. They had a semi-structured

interview by an experienced study nurse. Exclusion criteria

(migraineurs and controls) were: coexisting frequent epi-

sodic or chronic tension-type headache, acute or chronic

neurological disease, connective tissue disorder or other

painful conditions, malignancy, previous craniotomy or

cervical spine surgery, cardiopulmonary or cerebrovascular

disease, hypertension, pregnancy, medication for acute or

chronic pain, neuroleptics, alcohol or drug abuse, ferro-

magnetic implants, and use of neuroactive substances such

as anti-depressive, anti-epileptic, or migraine prophylactic

drugs within 4 weeks before the test. MRI scans were not

performed.

Forty-one migraine patients (33 without aura, 8 with

aura) and 31 controls were considered for this EEG study.

Three EEG recordings were performed in each subject

except for two patients who were not willing to undergo all

three EEG recordings because headache worsened after

the tests. Patients completed a questionnaire about their

headache asking about, e.g., disease duration, attack

duration, attack frequency (1–3), headache intensity (1–3),

and phono/photophobia (0–3). They kept a headache diary

for minimum 2 weeks before and after the test, including

entries on pain characteristics, accompanying symptoms,

consequences for work and leisure, and time of start and

end of headache. This enabled a correct retrospective

classification of the headache attack and its relationship to

the time of the EEG recordings.

Patients without at least one interictal recording (no

attack 36 h before and 36 h after the recording) were

excluded from the analysis. Thirty-six hours cut-off was

chosen because it has been shown that extending the time

to 72 h did not influence power values [29]. The diary was

incomplete in one patient who had only one EEG. Thirty-

three of the remaining 40 patients were accordingly ana-

lysed. One of the three EEG recordings was selected from

each control subject (day 1, 2, or 3) according to the

recording day of a corresponding age-matched patient.

Twenty-seven of the 33 patients reported laterality of the

attack following the interictal EEG recording. The cranial

side reported as most symptomatic during the following

attack was selected as the symptomatic side (S). S and

‘‘non-symptomatic’’ (NS) sides were selected by random

(either right or left) in controls.

Artefact-free segments were selected for quantitative

analysis. An EEG frequency spectrum was obtained with

Fast Fourier Transformation (FFT). Definitions and calcu-

lations are described in details previously [29]. In brief, we

calculated band power values (lV2) by summing power

across all bins in this frequency spectrum for 0.5–3.5 Hz

(delta), 3.75–7.5 Hz (theta) and 7.75–12.5 Hz (alpha).

Relative power values were defined as R = band power/

total power. Occipitoparietal (O1, O2, P3, P4), temporal

(T3, T4, T4, T6) and fronto-central (F3, F4, C3, C4)

regional average values were computed. Absolute asym-

metry was calculated as the sign-free difference between

the left-sided and the right-sided regional power. In the

subgroup of patients with unilateral symptom predomi-

nance (hemicrania), we did also calculate the S - NS

difference (ln-transformed power).

Alpha peak changes and pre-attack EEG band power

have been reported previously in paired studies [29, 50].

Other examinations in the 2.5-h long neurophysiological

battery were VEP [38], brainstem auditory evoked poten-

tials [37], thermal pain thresholds [30] and pupillary reflex

(to be reported in another paper).

The technicians, neurophysiologist, and other staff

involved in data reduction and analysis were blinded

regarding the diagnostic status. The study was carried out

according to the Helsinki declaration. Written consent was

obtained from all subjects. They received an amount

equivalent to 150 USD after completing the three sessions

to cover expenses (not mentioned in the newspaper
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advertisement). The Regional Ethics Committee approved

the study.

Statistics

The analysis was performed with SPSS (version 15.0) and

SYSTAT (version 11). We used Fisher exact test for cat-

egorical variables. As the distribution of QEEG data was

often skewed and some group sizes were small, non-para-

metric tests were used. The combined (MwoA ? MA)

migraine group was compared to the control group with

Mann–Whitney U tests. In case of significance, we per-

formed a post hoc comparison between MA and MwoA

subgroups for the variable in question (Mann–Whitney

test). The associations between QEEG (delta, theta, alpha

absolute and relative power) and headache history duration,

headache attack duration, headache intensity, headache

days in the last 3 months, phonophobia, and photophobia

were explored with Spearman’s rho. Significant associa-

tions were then controlled for age with an additional post

hoc partial correlation analysis. Band power was ln-trans-

formed before partial correlation analysis. With intention

to avoid type II errors, we considered two-sided p values

\0.05 to be significant.

Results

Demographic, clinical and EEG quality data are shown in

Table 1. There were no significant differences. Groups

were also comparable regarding coffee and alcohol use

(p [ 0.29, z [ -1–1, Mann–Whitney U test) as well as

tobacco smoking (p = 0.18, Fisher exact test). Eight of

the controls and 12 of the migraine patients used

hormonal active medication (birth prevention or replace-

ment therapy, p = 0.43, Fisher exact test). Three subjects

in each group used histamine antagonists (p = 1.0, Fisher

exact test).

Relative theta power was increased in migraine in the

parieto-occipital (p = 0.045), fronto-central (p = 0.06) and

temporal region (p = 0.037; Table 2; Fig. 1). Migraineurs

without aura had slightly more relative theta activity than

controls in post hoc analysis [mean (SD) in fronto-central

area: 0.16 (0.04) vs. 0.13 (0.04), p = 0.03; parieto-occipital

area: 0.12 (0.04) vs. 0.10 (0.04), p = 0.02; temporal area:

0.15 (0.05) vs. 0.12 (0.04), p = 0.02; Mann–Whitney U

tests]. The other relative power bands as well as absolute

power and asymmetry (not tabulated) were similar between

groups (Table 2).

Fronto-central delta power was slightly increased on the

symptomatic side (Mann–Whitney U test, p = 0.005;

Fig. 2). The increased fronto-central symptomatic–non-

symptomatic delta activity difference was also mainly

present in MwoA patients (0.53 lV2) compared to

-0.03 lV2 in MA (Mann–Whitney U test, p = 0.29) and

-0.62 lV2 in controls (Mann–Whitney U test, p = 0.003).

We observed a positive association between headache

intensity and delta power (Table 3; Fig. 3) as well as delta

asymmetry (fronto-central: rho = 0.38, p = 0.03; parieto-

occipital: rho = 0.34, p = 0.05; temporal delta asymme-

try: rho = 0.52, p = 0.001). The correlations between

fronto-central and temporal delta power and headache

intensity were also present after adjustment for age.

Headache history and age were both negatively associated

with delta power in migraine patients (Table 3). No negative

association between age and delta was found among controls

(rho [ -0.28, p [ 0.12), suggesting that headache history

duration was a more important predictor for delta power than

Table 1 Demographic and

clinical data

MA migraine with aura,

MwoA migraine without aura.

Eye blinks per minute.

Alfa persistence regularity of

typical occipital alpha rhythm

scored on a six-level scale.

Epochs number of 4-s

artefact-free EEG epochs

included in the spectral analysis

Migraine

(n = 33)

Migraine with attack

asymmetry (n = 27)

Controls

(n = 31)

Women/men 30/3 25/2 28/3

MwoA/MA 27/6 21/6

Age (years) 36.5 (12.7) 37.7 (12.9) 40.0 (11.4)

Days from last menstruation 11.0 (9.3) 11.4 (9.3) 10.2 (9.7)

Headache history (years) 19.3 (11.0) 20.6 (10.3)

Headache days last 3 months 6.2 (4.0) 5.9 (4.2)

Headache intensity (0–4) 2.4 (0.7) 2.5 (0.6)

Headache duration (h) 17.8 (22.0) 18.5 (22.9)

Photophobia (0–2) 1.4 (0.7) 1.4 (0.7)

Phonophobia (0–2) 1.1 (0.8) 1.3 (0.7)

EEG epochs 16.6 (2.2) 16.8 (2.2) 15.7 (1.6)

Percent drowsiness 7 (13) 7 (13) 5 (12)

Eye blinks 2.2 (3.9) 2.2 (4.3) 2.0 (2.8)

Alfa persistence (0–5) 3.8 (1.6) 4.0 (1.5) 3.8 (1.4)

J Headache Pain (2009) 10:331–339 333

123



age. However, the relationship between delta power and

headache history duration disappeared when age was con-

trolled in partial correlation analysis (r [ -0.24, p [ 0.17).

Headache history correlated negatively with delta asym-

metry (parieto-occipital: rho = -0.40, p = 0.02; temporal:

rho = -0.49, p = 0.004; fronto-central: rho = -0.33,

p = 0.06). Age also correlated negatively with parieto-

occipital (rho = -0.36, p = 0.04) and temporal (rho =

-0.49, p = 0.004) delta asymmetry in migraineurs, but not

in controls (r [ -0.30, p [ 0.10). After correcting for age,

headache history still correlated with parieto-occipital

delta asymmetry (log data: partial correlation r = -0.36,

p = 0.04).

Photophobia correlated positively with fronto-central

absolute theta asymmetry (rho = 0.35, p = 0.04), but not

after correcting for age.

Discussion

The main finding in this blinded controlled study was

globally increased relative theta activity in migraineurs.

This is in accordance with all of the earlier three studies we

have come across analyzing interictal relative power in

migraineurs. Lia et al. [22] found increased relative theta

activity in the parieto-occipital region in adults with and

Table 2 Absolute and relative spectral power

Mean absolute powera Mean relative powera

Migraine (n = 33) Controls (n = 31) p Migraine (n = 33) Controls (n = 31) p

Fronto-central

Delta power (lV2) 7.4 (3.5) 6.7 (2.8) 0.39 0.30 (0.12) 0.29 (0.14) 0.64

Theta power (lV2) 4.6 (4.2) 3.3 (1.8) 0.28 0.15 (0.04) 0.13 (0.04) 0.06

Alpha power (lV2) 12.2 (12.3) 10.9 (9.9) 0.83 0.35 (0.15) 0.35 (0.16) 0.97

Parieto-occipital

Delta power (lV2) 11.7 (10.3) 8.5 (3.0) 0.29 0.22 (0.13) 0.20 (0.13) 0.46

Theta power (lV2) 8.3 (11.8) 5.2 (3.5) 0.18 0.12 (0.04) 0.10 (0.04) 0.045

Alpha power (lV2) 45.8 (52.3) 38.6 (35.3) 1.00 0.50 (0.21) 0.51 (0.21) 0.73

Temporal

Delta power (lV2) 8.9 (6.3) 7.8 (3.2) 0.80 0.24 (0.10) 0.23 (0.13) 0.42

Theta power (lV2) 6.4 (7.0) 4.6 (3.0) 0.26 0.14 (0.05) 0.12 (0.04) 0.037

Alpha power (lV2) 22.0 (21.1) 21.2 (18.6) 0.95 0.43 (0.16) 0.43 (0.18) 0.84

Bold values represent significant p values (\0.05)

p value from non-parametric Mann–Whitney U tests

Fig. 1 Interictal relative theta power was increased in migraine in the

fronto-central (left box, p = 0.06), parieto-occipital (middle box,

p = 0.045) and temporal region (right box, p = 0.037) (Mann–

Whitney U test)

Fig. 2 Larger fronto-central delta power in migraineurs than in

controls is observed on the symptomatic side compared to the pain-

free side (S - NS difference; Mann–Whitney U test, p = 0.005).

S and NS have been selected randomly in the control group. Two

outliers are not shown (but included in the statistical analysis)
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without aura. Farkas et al. [20] found increased central

relative theta power in children with and without aura.

Genco et al. [24] reported increased theta, all regions in

children with and without aura while only delta was

increased in adults.

Generally, older studies have shown slight and inconsis-

tent interictal abnormalities in the alpha and theta bands as

reviewed by Sand [17]. We did not find any interictal

difference in absolute power values among controls and

migraineurs in the present study. These results are supported

by a recent, well-designed study [51]. However, an increase

of absolute theta activity has previously been found in

migraineurs with aura [52]. In a previous paper, we com-

pared EEG power in the interictal period to power in the

period before the attack within patients [29]. Interestingly,

absolute theta power tended to increase even more just

before the following headache attack in the same patients.

Taken together, these findings support a relative excess

of slow activity in migraineurs between attacks that pos-

sibly increases even more when an attack approaches. We

mainly found increased theta activity in migraineurs

without aura, but it is plausible that increased theta is also

present in migraineurs with aura since our aura subgroup

was small and earlier studies have found increased theta in

subjects both with and without aura [20, 22, 24].

Theta activity in healthy subjects is linked to hippocampal

memory networks during activated behavioural states and

thalamic networks during stage 1 NREM sleep [53, 54].

Theta rhythms from the limbic system are generated by

subcortical nuclei. Neuronal firing in several other subcor-

tical nuclei including the dorsal raphe nucleus (DRN)

and anterior thalamus is phase locked to theta oscillations

[55, 56]. Decreased serotonergic neurotransmission may

cause increased theta activities, as serotonergic tone from the

DRN normally desynchronizes (suppresses) hippocampal

theta. Under experimental conditions, either electrically or

chemically lesions or pharmacological depression of DRN

have been shown to elicit theta waves [56]. Cholinergic input

is important in generating theta activity from the limbic

system in awake states [55]. However, during sleep, reduc-

tion of either cholinergic, monoaminergic or histaminergic

tone from brainstem nuclei to thalamic and cortical neurons

is responsible for the transition from faster rhythms towards

theta and delta [54, 57].

Pathological theta waves may, on one hand, represent a

slowing down of the alpha rhythm due to reduced cerebral

blood flow and oxygen uptake in cortical grey matter

[54, 58]. Such slowing is seen in mild to moderate hypoxia,

cerebrovascular disease, dementias and mild degrees of

Table 3 Correlation between

EEG and clinical data in

migraine: Spearman rho

(p values)

Bold values represent

significant p values (\0.05)

* Partial correlation (adjusting

for age) was significant

(r [ 0.36, p \ 0.05). Significant

correlations were not found

between EEG and headache

attack duration, headache days

last 3 months, phonophobia or

photophobia

Age (years) Headache history (years) Headache intensity

Fronto-central

Delta power (lV2) -0.51 (0.002) -0.42 (0.02) 0.55 (0.001)*

Theta power (lV2) -0.13 (0.48) -0.13 (0.46) 0.12 (0.52)

Alpha power (lV2) 0.16 (0.38) 0.11 (0.53) 0.16 (0.38)

Parieto-occipital

Delta power (lV2) -0.54 (0.001) -0.48 (0.004) 0.46 (0.01)

Theta power (lV2) -0.07 (0.71) -0.08 (0.68) 0.07 (0.69)

Alpha power (lV2) 0.11 (0.53) 0.07 (0.71) 0.14 (0.43)

Temporal

Delta power (lV2) -0.52 (0.002) -0.54 (0.001) 0.50 (0.003)*

Theta power (lV2) -0.07 (0.68) -0.10 (0.58) 0.16 (0.37)

Alpha power (lV2) 0.04 (0.85) -0.01 (0.97) 0.17 (0.35)

Age – 0.75 (0.000) -0.55 (0.001)

Headache intensity -0.51 (0.001) -0.40 (0.01) –

Fig. 3 Linear regression lines are shown for fronto-central (open
circles, solid line), parieto-occipital (triangles, broken line) and

temporal (inverted triangles, dotted line) delta power (log-trans-

formed y-axis)
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metabolic encephalopathies. Intermittent, frontotemporal

theta, on the other hand, is often attributed to disturbances

in deep midline structures [54]. Some believe that theta

waves during wakefulness indicate one of several possible

pathophysiological conditions, including migraine, collec-

tively termed thalamic dysrhythmias [59].

T- and R-type calcium channels and calcium spikes may

be involved in the generation of theta waves [60, 61]. It can

be hypothesized that unstable or hyperactive calcium-

channel function is involved in migraine patients, possibly

explaining slight cognitive symptoms [62] or dysfunctions

in some patients, although genetic studies for some cal-

cium-channel genes have been negative in migraine so far

[63, 64].

Another interesting finding was frontal slow delta

activity at the side of the head becoming painful during the

next headache attack. Asymmetry due to reduction of alpha

power with increased or decreased theta power [65] and

frequency slowing [66] has been found earlier at the side of

the hemicrania during attacks. As power reduction has also

been seen 24–48 h after the attack [65], we cannot exclude

an after-effect imposed by the previous attack on the same

side. However, we did not find post-ictal QEEG after-

effects in our previous study [29], so this seems less likely.

Non-linear sleep EEG analysis has found pre-ictal changes

in cortical dynamics at the site of pain maxima of later pain

perception [67]. Frontal slow delta may thus reflect uni-

lateral prodromal cortical change in the side that is to be

painful, possibly a marker of a latent cortical spreading

depression.

Delta activities normally prevail during deep stages of

sleep and are most likely generated by cortical, pyramidal

neurons between layers II, III and V [54]. It appears when

the cholinergic tone from cortically projecting basal fore-

brain neurons decreases (cortical deafferentation) [54].

T-type calcium channels in thalamocortical networks are

also involved in the generation of delta activity during of

stage 3 and 4 NREM sleep [61].

We found unilateral slow activity in the frontal lobe.

Pathological polymorphic delta activity may occur local-

ized as well as unilateral, and can arise from both meta-

bolic and structural pathologies. Localized delta waves

may appear over a subcortical white matter lesion or on the

side of thalamic, midbrain reticular formation or hypotha-

lamic lesions [54, 68]. Partial cortical deafferentation may

be the cause of this [54]. Reduced frontal grey matter

density and diffusion abnormalities have been found by

several authors in migraineurs [45, 62, 69]; however,

localized lesions of the cortical grey matter do not produce

delta activity, only depression of the EEG background

activity [68]. In conclusion, slight changes in activity in

subcortical structures are probably the most likely substrate

of our finding. As MRI scans were not performed, we may

not conclude whether cerebral lesions contributed to the

findings in this study.

Our main finding in the correlation analysis was an

association between headache intensity and increased delta

power. In other words, migraineurs with high-intensity

attacks have slower activity in their EEG in all cortical

areas. The correlation analysis was mainly explorative and

hypothesis-generating. Whether our findings are linked to

the cause of headache or if it is a consequence of more

intense headaches over time remains to be answered.

However, a slight cortical dysfunction due to heavy pain

may be suspected, as white matter lesions and grey matter

changes in migraine patients correlate with severity of

migraine [40, 44, 45, 69, 70]. Cognitive impairments have

been found in migraineurs [62, 71] correlating with MRI

findings [62]. It has been hypothesized that repetitive

activation of trigeminovascular neurons and consequently

repetitive activation of modulatory pain pathways may lead

to impairment of function or partial neuronal cell damage

in these areas through the liberation of free radicals [1].

It also seemed like delta activity became more sym-

metric with increasing age. Asymmetry reduction in

older subjects is a well-known phenomenon in functional

MRI and PET literature [72]. A compensation theory (age-

related asymmetry reductions might counteract cognitive

decline) or a dedifferentiation view (changes reflect a

difficulty in recruiting specialized neural mechanisms) is

debated [72]. It is, therefore, possible that our results can

be explained by a more pronounced cortical ‘‘ageing’’

process in migraineurs compared to controls. It seems like

the increased symmetrical activity depends on the disease

duration, as headache history also correlated with parieto-

occipital symmetry after correcting for age. Some authors

have found a higher degree of abnormalities in older

migraine patients than in younger [28, 52], whereas others

found no correlation to clinical severity [25]. In another

study (on the same patients), we found that alpha peak

frequency slowing also correlated with migraine duration

[50]. This may strengthen the assumption that long-term

headache affects thalamocortical activity. We did not find

correlations with attack frequency, as seen in studies of

MRI alterations, but all patients were high frequency

migraineurs (between 2 and 6 attacks per month).

Some migraine prophylactics, such as anti-epileptic

medication, may influence EEG [73, 74]. Therefore, all

neuroactive drugs were ceased at least 4 weeks before EEG

recording and did not contribute to the results. Subjects

were allowed to use rescue medication, including triptans.

However, as all EEGs recorded during attack or within

36 h before and after migraine attack were excluded, it

seems unlikely that these substances could have influenced

the results. The half-life of the relevant triptans is between

2 and 6 h.
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Strengths of the present study are the prospective,

paired, blinded and controlled design, and the detailed

headache diaries completed before and after the tests. We

reduced the amount of data and number of comparisons by

restricting our computations to three frequency bands and

three cortical regions. However, our data must be inter-

preted with caution, and they need to be replicated before

firm conclusions are drawn. Our results are mostly repre-

sentative for migraineurs without aura and for women, as

rather few aura patients and men were recruited. It is

debatable whether our p values should be adjusted for

multiple comparisons. We have chosen not to do this

because Bonferroni-type corrections test the universal null

hypotheses (i.e. that all hypotheses are simultaneously non-

significant). Corrections aimed at preventing type I errors

are also associated with increased type II errors [75–77].

In conclusion, in this blinded controlled study, migrai-

neurs had increased relative theta power in a time period

free from pre-ictal activity interference. Delta activity was

increased even before pain onset in the cranial side to

become painful. Patients with high pain intensities had

more delta activity than those with less intense pain. These

results suggest that migraine is associated with a slight

brain dysfunction between attacks, possibly caused by

activity changes in subcortical or limbic structures. We

underline the need for replication of results before firm

conclusions are drawn.
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