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Abstract
Background Although gray matter (GM) volume alterations have been extensively documented in previous voxel-
based morphometry studies on vestibular migraine (VM), little is known about the impact of this disease on the 
topological organization of GM morphological networks. This study investigated the altered network patterns of the 
GM connectome in patients with VM.

Methods In this study, 55 patients with VM and 57 healthy controls (HCs) underwent structural T1-weighted MRI. 
GM morphological networks were constructed by estimating interregional similarity in the distributions of regional 
GM volume based on the Kullback–Leibler divergence measure. Graph-theoretical metrics and interregional 
morphological connectivity were computed and compared between the two groups. Partial correlation analyses 
were performed between significant GM connectome features and clinical parameters. Logistic regression (LR), 
support vector machine (SVM), and random forest (RF) classifiers were used to examine the performance of significant 
GM connectome features in distinguishing patients with VM from HCs.

Results Compared with HCs, patients with VM exhibited increased clustering coefficient and local efficiency, as well 
as reduced nodal degree and nodal efficiency in the left superior temporal gyrus (STG). Furthermore, we identified 
one connected component with decreased morphological connectivity strength, and the involved regions were 
mainly located in the STG, temporal pole, prefrontal cortex, supplementary motor area, cingulum, fusiform gyrus, 
and cerebellum. In the VM group, several connections in the identified connected component were correlated 
with clinical measures (i.e., symptoms and emotional scales); however, these correlations did not survive multiple 
comparison corrections. A combination of significant graph- and connectivity-based features allowed single-subject 
classification of VM versus HC with significant accuracy of 77.68%, 77.68%, and 72.32% for the LR, SVM, and RF models, 
respectively.
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Introduction
Vestibular migraine (VM) is a disabling neurological dis-
ease characterized by headache and recurrent episodes of 
vertigo, along with nausea, vomiting, and balance prob-
lems [1]. The disease has a lifetime prevalence of 1–3% 
in the general population [2, 3], and it is recognized as 
the most common cause of central episodic vertigo, and 
the second leading etiology of vestibular syndromes [4, 
5]. Recurrent vestibular and migraine symptoms severely 
affect patients’ quality of life, and pose a substantial eco-
nomic burden on the family and society [3]. However, the 
current diagnosis of VM mainly relies on medical his-
tory and clinical symptoms, with no specific or objective 
evidence, such as laboratory, imaging, and pathological 
findings [6, 7]. The unclear pathogenesis of VM is a pri-
mary obstacle to achieving optimal diagnosis and clinical 
efficacy [8]. Therefore, exploring the neural mechanism 
underlying VM and identifying potential biomarkers are 
important for facilitating the development of better diag-
nostic and treatment options for affected patients.

Recently, the use of advanced neuroimaging techniques 
has greatly broadened our insight into the neural mecha-
nisms of VM. Notably, several studies using resting-state 
functional MRI (rs-fMRI) have proposed VM as a cen-
tral vestibular disorder involving complex neuronal net-
works. For instance, several investigations have shown 
aberrant functional connectivity of regions regarding 
pain, vestibular, visual, and emotional processing in 
patients with VM [9–14]. Other studies using indepen-
dent component analysis have demonstrated that patients 
suffering from VM had interruptions in multiple intrinsic 
neural networks, including sensorimotor, vestibular cor-
tical, visual, salience, executive control, and default mode 
networks [8, 15–17]. However, the structural basis of the 
observed abnormalities in functional networks should be 
elucidated.

To date, structural MRI (sMRI)-based neuroimag-
ing studies on VM have mainly explored regional brain 
abnormalities in gray matter (GM) volume using a voxel-
based morphometry (VBM) approach; however, the 
results are highly heterogeneous and conflicting [14, 18–
21]. This discrepancy may be partially attributed to the 
instability of conventional univariate (i.e., GM volume) 
findings, whereas multivariate approaches may better 
capture complex pathological changes [22]. Furthermore, 
only regional structural changes could be identified 
based on VBM, which overlooked the potentially altered 

interrelationships among brain regions. The human 
brain is increasingly recognized as a system of interact-
ing information-sharing networks [23]; thus, compre-
hensive characterization from a network perspective can 
deepen the understanding of the structural architecture 
at the whole-brain level in both physical and pathological 
states [24, 25]. In view of this, structural covariance net-
work (SCN), a type of network constructed based on sta-
tistical correlations of the morphological indices among 
brain regions reflected by sMRI [26], may be a promis-
ing tool to provide complementary and comprehensive 
insight into the neural basis of VM. One strength of SCN 
lies in the distinct advantages offered by sMRI, including 
easy acquisition, high signal-to-noise ratio, and relative 
insensitivity to artifacts [27]. Moreover, several pieces 
of evidence have indicated that the topological charac-
teristics of the GM network connectome are sensitive to 
early brain damage [28, 29], thus may provide noninva-
sive early-stage in vivo biomarkers to assist in the clinical 
diagnosis of VM.

However, identifying biomarkers based on SCN has 
encountered certain technical challenges. The major con-
cern arises from the fact that SCNs are usually calculated 
by constructing a single brain network for each group, 
which disregards interindividual variability and pre-
cludes the examination of brain–behavior relationships 
and health–disease classification [30]. To address this 
issue, Kong et al. proposed a novel method that uses the 
Kullback–Leibler (KL) divergence-based similarity (KLS) 
measure to evaluate interregional morphological connec-
tivity, enabling the construction of individual GM mor-
phological networks [31]. This methodology effectively 
overcomes the aforementioned limitations by quantifying 
morphological relationships in individual subjects, and 
has been successfully used to delineate alterations in the 
morphological connectivity profiles of neurological dis-
eases, such as Parkinson’s disease [27, 32], mild cognitive 
impairment [33], and social anxiety disorder [34]. Com-
bined with the observed neuroimaging findings of GM 
volume alterations, we hypothesized that patients with 
VM might exhibit aberrant GM network connectomes 
that could be detected by KLS-based SCN. This approach 
may improve our understanding of the underlying struc-
ture network mechanisms of VM.

Therefore, the purpose of this study was to verify our 
hypothesis by investigating the topological organization 
of GM morphological networks in patients with VM. 

Conclusion Patients with VM had aberrant GM connectomes in terms of topological properties and network 
connections, reflecting potential dizziness, pain, and emotional dysfunctions. The identified features could serve as 
individualized neuroimaging markers of VM.

Keywords Vestibular migraine, Magnetic resonance imaging, Gray matter, Morphological brain network, Graph 
theory, Machine learning
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In particular, both graph-theoretical metrics and inter-
regional morphological connectivity were computed to 
systematically estimate differences in network attributes 
between patients with VM and healthy controls (HCs). 
Furthermore, because machine learning has received 
increasing attention and significantly contributes to the 
identification of potential neuroimaging biomarkers [35], 
we used three common machine learning models, i.e., 
logistic regression (LR), support vector machine (SVM), 
and random forest (RF), to test whether GM connectome 
features can be used to differentiate patients with VM 
from HCs (Fig. 1).

Materials and methods
Subjects and clinical assessment
This study was conducted according to the Declaration 
of Helsinki and was approved by the Ethics Committee 
of the First Affiliated Hospital of Soochow University. 
Written informed consent was obtained from all sub-
jects before their participation. Fifty-five patients with 
VM (47 females/8 males; age: 45.89 ± 12.29 years old; 
education level: 10.47 ± 4.79 years) and 57 demographi-
cally similar healthy controls (HCs) (48 females/9 males; 
age: 45.86 ± 12.37 years old; education level: 11.89 ± 4.77 
years) were included in this study. The data presented 

here derived from our dataset collected between Octo-
ber 2020 and December 2022, and was partially over-
lapped with that employed in our previous publication 
on functional concordance [36]. In this study, the level 
of demographic factors between groups were matched to 
be as close as possible under the condition of sufficient 
and balanced sample sizes [37], and T1 structural images 
were utilized as the sole and principal image data. The 
diagnosis of VM were based on the criteria published by 
the Bárány Society and International Headache Society 
(ICHD-3 beta, appendix) [38, 39]. Videonystagmography, 
vestibular caloric test, video head impulse and audiom-
etry tests were performed to rule out peripheral vestibu-
lar diseases. We collected demographic and clinical data 
from all patients using a standardized questionnaire, 
including sex, age, education level, migraine disease 
duration, vertigo disease duration, headache frequency 
(days per month), 10-point Visual Analog Scale (VAS), 
Dizziness Handicap Inventory (DHI), Migraine Disabil-
ity Assessment Scale (MIDAS), Headache Impact Test-6 
(HIT-6), Patient Health Questionnaire-9 (PHQ-9), and 
Generalized Anxiety Disorder-7 (GAD-7).

All patients with VM were not under regular preven-
tive therapy and had not taken any therapeutic drugs 
within 3 days before MRI scanning. We performed MRI 

Fig. 1 Flowchart of the analysis process. (A) The GM volume was estimated with VBM using SPM. Whole-brain GM was parcellated using the AAL116 atlas 
(116 regions). (B) The PDF of GM volume was calculated using kernel density estimation. Statistical similarities between the PDFs of pairwise brain regions 
were then evaluated with KL divergence. (C) As a result, a 116 × 116 similarity matrix representing the GM volume covariance network was generated for 
each subject. (D) Global and local topological properties were calculated through graph-theoretical analyses. (E) The network metrics, including network 
topological properties and connections were compared between patients with VM and HCs. (F) LR, SVM, and RF classifiers were used to construct models 
for distinguishing individuals with VM from HCs based on the discriminative GM connectome features. GM = gray matter; VBM = voxel-based morphom-
etry; SPM = Statistical Parametric Mapping; AAL = Automatic Anatomical Labeling; PDF = Probability Distribution Function; KL = Kullback–Leibler; VM = ves-
tibular migraine; HC = healthy control; LR = logistic regression; SVM = support vector machine; RF = random forest; Lp = characteristic path length; Cp = 
clustering coefficient; λ = normalized characteristic path length; γ = normalized clustering coefficient; σ = small-worldness; Eglob = global efficiency; Eloc = 
local efficiency; NBS = network-based statistics; AUC = area under the curve
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for patients with VM during the interictal stage. Patients 
were considered to be in the interictal period if they did 
not have vestibular or migraine symptoms at least 3 days 
before and 1 day after MRI acquisition. All the HCs had 
no history of migraine, vertigo, or any other types of pri-
mary headache. The following exclusion criteria were 
applied to all subjects: left-handedness; other neurologi-
cal or psychiatric diseases; other pain conditions; drug or 
alcohol abuse; and MRI contraindications, such as preg-
nancy, claustrophobia, and ferromagnetic implants.

To determine whether the sample size was adequate 
in the current study, a power analysis was further con-
ducted. Since there are no studies directly exploring 
the GM connectome in patients with VM, we reviewed 
previous literature of structural neuroimaging stud-
ies on VM (with a case-control design), and listed the 
effect sizes in Table S1. The minimum Cohen’s d in 
each research ranged from 1.02 to 1.47, which indicated 
extremely large effects, and we finally applied a conser-
vative Cohen’s d of 0.80 (corresponding to a large effect). 
The G*Power software [40] was then used to estimate the 
required sample size with the following parameters: test 
family = t tests, statistical test = difference between two 
independent groups, tail(s) = two, effect size d = 0.80, sig-
nificance criterion α = 0.05, and statistical power 1-β = 0.8. 
The required sample size was determined to be 26 for 
each group, indicating that our sample of 55 patients with 
VM and 57 HCs was adequate to provide sufficient statis-
tical power for analyses.

MRI acquisition
All subjects were scanned using a 3.0-Tesla MRI sys-
tem (MAGNETOM Skyra, Siemens Healthcare, Erlan-
gen, Germany) with a 16-channel head and neck joint 
coil. Head motion and scanning noise were reduced by 
applying foam padding and earplugs. All subjects were 
instructed to lie still in the supine position with their 
eyes closed, relaxing and staying awake. High-resolu-
tion T1-weighted anatomic images were obtained using 
a sagittal fast spoiled gradient-recalled echo sequence: 
repetition time = 2300 ms, echo time = 2.98 ms, field of 
view = 256 × 256 mm2, matrix = 256 × 256, slice thick-
ness = 1 mm, and slice number = 192. After the procedure, 
the images were immediately reviewed by two experi-
enced radiologists to rule out visible lesions.

Data preprocessing
For structural MRI data processing, we used the Statisti-
cal Parametric Mapping analysis package (SPM12, http://
www.fil.ion.ucl.ac.uk/spm/software/spm12/) along with 
the Computational Anatomy Toolbox for SPM (CAT12, 
http://www.neuro.uni-jena.de/cat/) for VBM analysis. In 
this procedure, all T1-weighted images were corrected 
for bias field inhomogeneities and then segmented into 

GM, white matter, and cerebrospinal fluid. The images 
were transformed into the standard Montreal Neurologi-
cal Institute space by normalizing with a transformation 
integration of the diffeomorphic anatomic registration 
through exponentiated lie algebra algorithm and geo-
desic shooting, and resampled to 1.5 × 1.5 × 1.5 mm3. To 
preserve tissue volume after warping, voxel values in 
individual GM images were modulated by multiplying 
by Jacobian determinants derived from normalization. 
Finally, a GM volume map of each subject was created.

Construction of individual GM morphological networks
Based on the Automatic Anatomical Labeling atlas, the 
brain was divided into 116 regions of interest (ROIs), 
which served as nodes of the morphological brain net-
work. Consistent with previous reports [32, 34], KL 
divergence was used to quantify the similarity of regional 
GM volume distribution between two regions (i.e., the 
edge between nodes), referred to as a morphological con-
nection. To construct the GM morphological networks of 
each subject, we first extracted the GM volume values of 
all voxels within each ROI. The probability density func-
tion of these values was estimated using kernel density 
estimation with automatically estimated bandwidths, 
which was in turn used to compute the Probability Distri-
bution Function (PDF) [41]. The KL divergence was then 
computed between two PDFs of each pair of ROIs. KL 
divergence quantifies the difference between two proba-
bility distributions, which equates to the information lost 
when a probability distribution is used to approximate 
another [42]. The standard KL divergence from the distri-
bution Q to P is computed as follows:

 
DKL(P ‖ Q) =

n∑

i=1

P (i) log
P (i)

Q(i)
,

thus a 116 × 116 similarity matrix was generated for each 
subject by calculating the KLS values between all possi-
ble pairs of the 116 ROIs. However, because DKL(P‖Q) is 
unequal to DKL(Q‖P), we assessed the similarity between 
the two PDFs using a symmetric KL divergence, that is, 
DKL(P, Q) [31, 41], which is a derivate of the KL diver-
gence and is calculated as follows:

 
DKL(P,Q) =

n∑

i=1

(
P (i) log

P (i)

Q(i)
+Q(i) log

Q(i)

P (i)

)
.

Subsequently, the value of symmetric KL divergence 
was converted to a similarity measurement (range 0 [no 
similarity] to 1 [identical distributions]) for all pairwise 
regions using the following formula [31, 41]:

 KLS(P,Q) = e−DKL(P,Q),

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://www.neuro.uni-jena.de/cat/


Page 5 of 13Chen et al. The Journal of Headache and Pain          (2024) 25:177 

and this produced 1 KLS-based SCN (116 × 116) for each 
subject, which was recognized as the final GM morpho-
logical network.

Network analyses
Network analyses were performed using the GRETNA 
toolbox (https://www.nitrc.org/projects/gretna/). To 
ensure that the morphological networks contained the 
same number of edges across participants at a fixed spar-
sity (i.e., the number of actual edges as a fraction of all 
possible edges), we used a sparsity-based thresholding 
procedure to convert them to a set of binary networks. 
A wide range of sparsity thresholds (0.05–0.30, with an 
interval of 0.01) [34] were used for binarization. In the 
resulting binarized SCNs, a value of 1 denotes significant 
covariation of the pairwise areas, and a value of 0 repre-
sents none.

Graph-theoretical properties were computed to quan-
tify the topological characteristics of SCNs. For each 
individual morphological network at each sparsity level, 
we calculated global metrics including characteristic path 
length (Lp), clustering coefficient (Cp), normalized char-
acteristic path length (λ), normalized clustering coeffi-
cient (γ), small-worldness (σ), global efficiency (Eglob), and 
local efficiency (Eloc). Herein, a set of random networks 
(number = 1000) were generated for the calculation of 
λ and γ. To characterize the network nodes, nodal met-
rics including nodal degree, nodal efficiency and nodal 
betweenness, were also computed. We further calcu-
lated the area under the curve (AUC) across the sparsity 
range (0.05–0.30, with an interval of 0.01) [34] as a com-
prehensive scalar measure of brain network topology for 
each metric, thereby avoiding potential bias of any single 
threshold.

Statistical analyses
Demographic and clinical data were analyzed using the 
SPSS software (version 27.0.1, IBM Corp., Armonk, NY, 
USA). For continuous variables, two-sample t-test (evalu-
ating data with normal distribution) or the Mann–Whit-
ney U test (evaluating data not normally distributed) 
was performed to compare differences between the VM 
group and HCs. The chi-square test was used to compare 
differences of categorical variables. The statistical signifi-
cance threshold was set at P < 0.05.

The AUC of network metrics were compared between 
the VM group and HCs using an independent-sample 
t-test with sex, age, and education level as covariates of 
no interest in the GRETNA toolbox. For local topological 
characteristics, we used the false discovery rate (FDR) to 
correct for multiple comparisons at a significance level of 
P < 0.05.

The network-based statistics (NBS) method [43], 
implemented in the GRETNA toolbox, was used to 

localize specific pairs of regions with altered structural 
connections in the VM group. First, the edge-by-edge 
comparison of the strength of edge weight in the SCN 
matrix was performed between the VM group and HCs 
using the two-sample t-test. Second, the components that 
contained connected supra-threshold edges with P value 
of 0.001 were retained. Then, an empirical distribution of 
the connected component size was derived, and the larg-
est component size was calculated by repeating the afore-
mentioned steps with 5,000 permutations and setting 
the P value at 0.05 corrected for multiple comparisons. 
Before the permutation test, the potential confounding 
effects of sex, age, and education level were eliminated by 
multiple linear regression.

In the VM cohort, for network topological proper-
ties and connections that exhibited significant between-
group differences, partial correlation analyses were 
performed to examine their relationships with clinical 
parameters, after controlling for the effects of sex, age, 
and education level. The correlation analyses were per-
formed with SPSS 27.0.1, and the statistical threshold 
was set at P < 0.05.

Machine learning analyses
To further validate the between-group differences of 
network topological properties and connections and to 
investigate their potential diagnostic value, three classi-
fiers including LR, SVM, and RF were used to construct 
models for distinguishing individuals with VM from 
HCs. A combination of significant imaging features was 
used for the analyses. The nested cross-validation (CV) 
method was employed for machine learning, with 10-fold 
CV in the outer loop and stratified 5-fold CV in the inner 
loop. For the outer loop, min–max normalization was 
performed in each fold. For the inner loop, hyperparam-
eter tuning was performed to optimize accuracy (LR and 
SVM: C = 2− 5, 2− 4, 2− 3, 2− 2, 2− 1, 1, 2, 4, 8, 16, and 32; RF: 
n_estimators = 10–200 with an interval of 10). After the 
completion of hyperparameter tuning in the inner loop, 
the optimal hyperparameters were used to train the final 
model based on the training set in the outer loop. Subse-
quently, model validation was performed with the testing 
set in the outer loop, yielding the accuracy, AUC, sensi-
tivity, and specificity indices. Receiver operating charac-
teristic (ROC) curve analysis was performed to examine 
classification performance. To validate the significance 
of accuracy and AUC, nonparametric permutation tests 
with 5,000 permutations were performed (statistical sig-
nificance was set at P < 0.05). The mean weight (for LR 
and SVM) as well as the mean feature importance (for 
RF) across the CVs were employed as indicators of fea-
ture contribution to classification. We adopted the top 
20% important features (sorted by absolute values of fea-
ture contributions) which simultaneously appeared in all 

https://www.nitrc.org/projects/gretna/
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models (LR, SVM, and RF) as the most contributed fea-
tures for distinguishing individuals with VM from HCs.

Results
Demographic and clinical characteristics
Table 1 presents the demographic and clinical character-
istics of the study population. No significant differences 
in age (P = 0.848), sex (P = 0.854), or years of education 
(P = 0.171) were observed between the two groups.

Group differences in the topological metrics of SCNs
Regarding global topological characteristics, patients 
suffering from VM exhibited significantly increased Cp 
(P = 0.011) and Eloc (P = 0.025) compared with HCs, after 
controlling for sex, age, and education level (Fig. 2). No 
significant intergroup differences in other global metrics 
were observed between the two groups. Table  2 pres-
ents detailed results of intergroup comparisons of global 
graph metrics.

Regarding local topological characteristics, patients 
suffering from VM exhibited significantly reduced nodal 
degree (P = 2.534e-04, FDR-corrected P [PFDR] = 0.029) 
and nodal efficiency (P = 2.570e-04, PFDR = 0.030) in the 
left superior temporal gyrus (STG) after controlling for 
sex, age, and education level (Fig. 3; Table 3). No signifi-
cant intergroup differences were observed in the other 
local metrics.

Table 1 Demographic and clinical characteristics of VM and HC 
groups
Items VM group

(n = 55)
HC group
(n = 57)

P

Age (years) 45.89 ± 12.29 45.86 ± 12.37 0.848a

Sex (male/female) 8/47 9/48 0.854b

Education level (years) 10.47 ± 4.79 11.89 ± 4.77 0.171a

Migraine disease duration (years) 11.79 ± 11.21 - -
Vertigo disease duration (years) 6.95 ± 8.61 - -
Headache frequency/month 2.32 ± 2.44 - -
VAS 6.33 ± 2.03 - -
DHI 52.25 ± 17.04 - -
MIDAS 11.26 ± 11.77 - -
HIT-6 55.15 ± 12.73 - -
PHQ-9 6.36 ± 5.61 - -
GAD-7 5.04 ± 4.43 - -
Data were presented as mean ± standard deviation unless otherwise indicated

VM = vestibular migraine; HC = healthy control; VAS = Visual Analog Scale; 
DHI = Dizziness Handicap Inventory; MIDAS = Migraine Disability Assessment 
Scale; HIT-6 = Headache Impact Test-6; PHQ-9 = Patient Health Questionnaire-9; 
GAD-7 = Generalized Anxiety Disorder-7; n = number of subjects
a P value with Mann–Whitney U test
b P value with Chi-square test

Table 2 Statistical results of global graph metrics between the 
two groups (controlling for sex, age, and education level)
Global graph metrics VM group HC group P
Lp 0.692 ± 0.023 0.691 ± 0.021 0.702
Cp 0.148 ± 0.004 0.146 ± 0.003 0.011*

λ 0.320 ± 0.008 0.317 ± 0.008 0.141
γ 0.507 ± 0.053 0.495 ± 0.051 0.414
σ 0.391 ± 0.044 0.386 ± 0.042 0.715
Eglob 0.098 ± 0.002 0.098 ± 0.002 0.949
Eloc 0.178 ± 0.004 0.176 ± 0.004 0.025*

Data were presented as mean ± standard deviation
* Statistical significance (P < 0.05)

VM = vestibular migraine; HC = healthy control; Lp = characteristic path length; Cp 
= clustering coefficient; λ = normalized characteristic path length; γ = normalized 
clustering coefficient; σ = small-worldness; Eglob = global efficiency; Eloc = local 
efficiency

Fig. 2 Between-group differences in global topological properties. (A) The VM group exhibited significantly increased Cp (P = 0.011) compared with HCs. 
(B) The VM group exhibited significantly increased Eloc (P = 0.025) compared with HCs. Results are shown as a box plot with individual data points and a 
smoothed distribution. Sex, age, and education level were controlled as covariates of no interest. VM = vestibular migraine; Cp = clustering coefficient; 
HC = healthy control; Eloc = local efficiency
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Group differences in network connections
Compared with HCs, the VM group presented one 
connected component with decreased morphological 
connectivity strength in the NBS analysis, after control-
ling for sex, age, and education level (P < 0.05, NBS cor-
rected). The component comprised 15 brain regions and 
16 edges. The involved regions were mainly located in the 
STG, temporal pole, prefrontal cortex (PFC), supplemen-
tary motor area (SMA), cingulum, fusiform gyrus, and 
cerebellum (Fig. 4).

Correlation analysis
In the VM group, after controlling for sex, age, and 
education level, several connections in the identified 
connected component were correlated with clinical mea-
sures, including vertigo disease duration, DHI, MIDAS, 
PHQ-9, and GAD-7 (P < 0.05) (Fig.  5). However, these 
correlations did not survive FDR correction (PFDR > 0.05) 
or Bonferroni correction (Bonferroni-corrected P > 0.05) 
for multiple comparisons. Furthermore, no significant 
relationships were observed between the other network 
features and clinical indices (P > 0.05).

Single‑subject classification of patients with VM and HCs
Based on the significant topological metrics and connec-
tions, our machine learning models exhibited good per-
formance in distinguishing patients with VM from HCs. 
Specifically, the LR model achieved a total accuracy of 
77.68% (P < 0.001), an AUC of 0.790 (P < 0.001), a sensitiv-
ity of 65.45%, and a specificity of 89.47%; the SVM model 
achieved a total accuracy of 77.68% (P < 0.001), an AUC 
of 0.831 (P < 0.001), a sensitivity of 63.64%, and a specific-
ity of 91.23%; and the RF model achieved a total accuracy 
of 72.32% (P < 0.001), an AUC of 0.801 (P < 0.001), a sen-
sitivity of 67.27%, and a specificity of 77.19%. The ROC 
curves of the classifiers are shown in Fig.  6. The most 
contributed features (i.e., the top 20% important features 
simultaneously appearing in all models) were the KLS 
between left fusiform gyrus and right superior frontal 
gyrus (dorsolateral), as well as the KLS between left crus I 
of cerebellar hemisphere and right superior frontal gyrus 
(dorsolateral). Detailed contributions of features in each 
model are shown in Table S2.

Discussion
This study investigated single-subject GM connectome 
disorganization in patients with VM using a novel mor-
phological similarity network analysis combined with a 
machine learning approach. Consistent with our hypoth-
esis, the VM group exhibited altered global and regional 
topological properties, and reduced connectivity in a 
specific component. Moreover, the machine learning 
models achieved good accuracy and efficacy in classify-
ing patients with VM and HCs. These findings may pro-
vide new insights into the pathophysiology of VM.

The morphological similarity network has been consid-
ered as a promising approach for investigating the indi-
vidual-level structural organization of the human brain 
[41]. Although the exact interpretation of neurobiological 

Table 3 Statistical results of significant local graph metrics 
between the two groups (controlling for sex, age, and education 
level)
Local graph metrics VM group HC group P PFDR

Nodal degree (STG.L) 5.91 ± 2.55 7.38 ± 1.31 2.534e-04 0.029*

Nodal efficiency (STG.L) 0.11 ± 0.03 0.13 ± 0.01 2.570e-04 0.030*

Data were presented as mean ± standard deviation
* Statistical significance (PFDR < 0.05)

VM = vestibular migraine; HC = healthy control; FDR  =  false discovery rate; 
STG = superior temporal gyrus; L = left

Fig. 3 Between-group differences in local topological properties. (A) The brain region with significant local graph metrics (i.e., STG.L) was visualized using 
the BrainNet viewer package (http://nitrc.org/projects/bnv/). (B) The VM group demonstrated significantly reduced nodal degree (P = 2.534e-04, PFDR = 
0.029) in the STG.L compared with HCs. (C) The VM group exhibited significantly reduced nodal efficiency (P = 2.570e-04, PFDR = 0.030) in the STG.L com-
pared with HCs. Results are shown as a box plot with individual data points and a smoothed distribution. Sex, age, and education level were controlled as 
covariates of no interest. STG = superior temporal gyrus; L = left; VM = vestibular migraine; FDR = false discovery rate; HC = healthy control
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meaning remains unclear, several pieces of evidence have 
shown that heredity, experience-related plasticity, devel-
opment, and aging trajectories play crucial roles in the 
formation of the network [30, 44]. Physically, the cortical 
morphology of the human brain comprises a complex but 
efficient network that balances local specialization and 
global integration to maximize parallel information pro-
cessing [41]. Under pathological conditions, the induced 
changes in GM density may influence the morphologi-
cal similarity of different GM regions, thus disrupting 
the distributed GM morphological network architecture 
[32]. Therefore, the morphological similarity network is 
thought to be biologically meaningful for capturing the 
potential mechanisms underlying these physical and 
pathological processes [41].

The normal human brain is globally organized as a 
small-world network, which optimally balances seg-
regation (reflected by Cp, γ, and Eloc) and integration 
(reflected by Lp, λ, and Eglob) to facilitate efficient infor-
mation processing at minimal costs [45]. In disease 
states, small-world topological properties can be altered 
and categorized into four patterns: regularization, ran-
domization, stronger small-worldization, and weaker 
small-worldization [46]. Our study demonstrated that 
despite exhibiting an overall small-world architecture 

similar to that of HCs, the VM group exhibited higher 
Cp and Eloc, indicating higher segregation of the struc-
tural network and suggesting a regularization profile 
in patients with VM. This finding agrees with those of a 
previous investigation by Liu et al. [47], which revealed a 
similar regularization (higher Cp and γ) of structural net-
work topology in patients with migraine. They explained 
that the presence of chronic headache alters the struc-
tural connections sharing the nested local network in a 
chronic pain-related manner, inducing a more clustered 
condition. Thus, the observed regularization pattern may 
be partially attributed to the outcomes of headache in 
VM pathophysiology.

At the regional level, decreased nodal degree and effi-
ciency in the left STG were observed in the VM group. 
Nodal degree and efficiency reflect the capacity of 
information integration and transmission, whereas a 
reduction in these parameters indicates disrupted inter-
connectivity with other regions in the network [48]. GM 
volume reduction [20] and various functional changes 
[12, 49, 50] of the STG in patients with VM have been 
reported, suggesting that the STG plays an important 
role in the neural mechanism underlying VM. The STG, 
a crucial area within the vestibular network [51], partici-
pates in processing the spatial coordination of the eyes, 

Fig. 4 Illustrations of the impaired interregional morphological connectivity in VM. (A) The identified connected component with decreased connectiv-
ity was mapped on the Ch2 template using the BrainNet viewer package (http://nitrc.org/projects/bnv/). Blue line indicates the weight of the decreased 
connection in the VM group. (B) The connectogram presents detailed information of the nodes and edges in the component. Blue chord indicates the 
existence of reduced interregional connection in the VM group. Sex, age, and education level were controlled as covariates of no interest. VM = vestibu-
lar migraine; SFGdor = superior frontal gyrus, dorsolateral; IFGoperc = inferior frontal gyrus, opercular part; ORBsup = superior frontal gyrus, orbital part; 
ORBinf = inferior frontal gyrus, orbital part; ORBsupmed = superior frontal gyrus, medial orbital; SMA = supplementary motor area; DCG = median cingulate 
and paracingulate gyri; FFG = fusiform gyrus; STG = superior temporal gyrus; TPOsup = temporal pole: superior temporal gyrus; CRBLCrus1 = crus I of cer-
ebellar hemisphere; CRBLCrus2 = crus II of cerebellar hemisphere; CRBL7b = lobule VIIB of cerebellar hemisphere; Vermis45 = lobule IV, V of vermis; L = left; 
R = right
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head, and body [52], and is closely connected to the mul-
tisensory parieto-insula cortex [20]. Furthermore, the 
STG is implicated in emotional perception [53]. Com-
bined with the clinical manifestations of VM (i.e., dizzi-
ness, pain, and emotional discomfort), we deduced that 
the observed reduced nodal properties of the STG may 
reflect potential disturbances in the ability to process 
information related to spatial coordination, multisen-
sory integration, and emotional perception. However, it 
should be noted that a portion of values (including sev-
eral outliers) deviated from the overall pattern for both 
nodal degree and nodal efficiency in the left STG of VM, 

thereby exerting an influence on the general level of these 
indices in the VM cohort. We cautiously hypothesized 
that this finding might reflect the individual heteroge-
neity of VM, given that VM is recognized to be a highly 
heterogeneous disorder with variations in clinical pre-
sentations [54]. Nonetheless, the hypothesis was specula-
tive and needed to be validated by further research with a 
larger cohort.

Our examination of the morphological connections 
between brain region pairs using NBS identified a sub-
network with decreased connections in patients with 
VM, mainly involving the STG, temporal pole, PFC, 

Fig. 5 Clinical correlates of significant GM connectome features in the VM group. Scatter plots depict the relationship between clinical indices and GM 
connectome features with between-group differences in patients with VM (∗P < 0.05, ∗∗P < 0.01). Several connections in the identified connected com-
ponent were correlated with clinical measures (P < 0.05); however, these correlations did not survive FDR correction (PFDR > 0.05) or Bonferroni correction 
(Bonferroni-corrected P > 0.05) for multiple comparisons. Sex, age, and education level were controlled as covariates of no interest. GM = gray matter; 
VM = vestibular migraine; FDR = false discovery rate; KLS = Kullback–Leibler divergence-based similarity; DCG = median cingulate and paracingulate gyri; 
SFGdor = superior frontal gyrus, dorsolateral; SMA = supplementary motor area; FFG = fusiform gyrus; STG = superior temporal gyrus; Vermis45 = lobule IV, 
V of vermis; ORBsup = superior frontal gyrus, orbital part; IFGoperc = inferior frontal gyrus, opercular part; L = left; R = right; PHQ-9 = Patient Health Ques-
tionnaire-9; GAD-7 = Generalized Anxiety Disorder-7; DHI = Dizziness Handicap Inventory; MIDAS = Migraine Disability Assessment Scale
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SMA, cingulum cortex, fusiform gyrus, and cerebel-
lum. Considering the aforementioned pivotal role of the 
STG in the pathophysiology of VM, it would be reason-
able that the STG appeared in the disrupted component. 
The temporal pole is an associative multisensory region 
that processes visual, olfactory, and auditory information 
[55]. Considering that some patients with VM exhibit 
enhanced sensitivity to olfactory, auditory, and visual 
stimuli [56, 57], we assume that temporal pole alterations 
might be related to the hypersensitivity manifestations of 
VM. The PFC plays a crucial role in connecting the lim-
bic system and subcortical regions, and is implicated in 
pain perception, regulation, as well as cognitive and emo-
tional processes [58, 59]. A previous study revealed that 
migraineurs exhibited greater pain-induced activation in 
the PFC, suggesting a link to the cognitive aspects of pain 
perception, such as pain-related memories [60]. There-
fore, PFC involvement may be associated with painful 
experiences in individuals with VM.

The SMA, located in the dorsomedial frontal cortex, is 
involved in self-initiated and triggered movements [61], 
as well as anticipation and affective components of pain 
[62]. The observed SMA involvement is consistent with 

previous neuroimaging investigations on VM [19, 62], 
suggesting deficits in pain and balance control, which 
may contribute to hyperreactivity, equilibrium problems, 
and motion-induced vestibular symptoms in patients 
with VM. The cingulate cortex plays a vital role not only 
in pain sensation [63], but also in motor and vestibular 
processing [64]; thus, it is plausible that the cingulate 
cortex was involved. The fusiform gyrus is implicated in 
higher visual function and pain processing [65, 66] and 
has been reported to exhibit structural and functional 
disturbances in migraineurs [60, 65]. The cerebellum 
plays a key role in processing sensorimotor, cognitive, 
and emotional information [67]. Structural abnormali-
ties in the cerebellum may reflect both the physical (i.e., 
dizziness, pain) and mental (i.e., anxiety, depression 
[68]) aspects of the disease. Taken together, we show 
that patients with VM exhibited altered morphological 
relations between these regions, indicating an incon-
gruous GM disruption pattern, which may be a possible 
neural mechanism underlying VM. Furthermore, in this 
study, several altered connections tended to be corre-
lated with clinical indices (i.e., vertigo disease duration, 
DHI, MIDAS, PHQ-9, and GAD-7), indicating that these 

Fig. 6 ROC curves of the LR, SVM, and RF classifiers based on discriminative GM connectome features (i.e., significant topological metrics and con-
nections) for distinguishing individuals with VM from HCs. The AUCs for the LR, SVM and RF models were 0.790 (P < 0.001), 0.831 (P < 0.001) and 0.801 
(P < 0.001), respectively. ROC = receiver operating characteristic; LR = logistic regression; SVM = support vector machine; RF = random forest; GM = gray 
matter; VM = vestibular migraine; HC = healthy control; AUC = area under the curve
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observed changes may be meaningful neuroimaging fea-
tures for VM.

In our study, we identified two morphological connec-
tions as the most contributed GM connectome features, 
including the KLS between fusiform gyrus and PFC, as 
well as the KLS between cerebellum and PFC. The cer-
ebellum and PFC are vital components of the vestibular-
thalamic-cortical pathway, whilst the fusiform gyrus is 
located in the ventral visual stream. In a previous FDG-
PET study by Shin et al. [69], patients with VM showed 
activation in the vestibular-thalamic-cortical pathway 
and inhibition in the visual pathway during the ictal 
period. Another fMRI investigation [50] on the vertigo-
free period demonstrated activation of brain regions 
associated with integration of visual and vestibular cues. 
Consistent with these findings, the present study also 
revealed changes within these circuits. Although the 
neurobiological meaning remains incompletely under-
stood, morphological similarity is deemed to contain 
specific information (e.g. cytoarchitectonic similarity and 
co-expression of specialized neuronal function genes), 
and can be driven by other factors such as levels of neu-
rophysiological activity [32, 70]. While in pathological 
states, lesions may induce GM density changes which 
impact the inter-regional morphological similarities [32]. 
Thus, we deduce that the altered morphological relations 
might indicate the distinct integrity of different portions 
in the relevant circuits [71], hinting that disruption of 
the components in the circuits may be incongruous. As a 
supplement to prior research, the findings elucidated the 
potential morphological relation mechanisms regarding 
the pathways involved in VM.

Currently, most neuroimaging studies draw conclu-
sions based on differences identified through traditional 
intergroup statistical approaches. However, these find-
ings cannot be further applied at the individual level, 
limiting their translational capability. Underdiagnosis of 
VM is frequently observed in clinical practice [72], likely 
due to the unclear pathophysiological mechanisms and 
the lack of specific biomarkers [73]. In this study, we used 
three common machine learning models (LR, SVM, and 
RF) based on the topological metrics and connections of 
a morphological similarity network. The individualized 
SCN resolved the limitation of conventional group-level 
SCN (i.e., inability to generate an individual network for 
each subject), and the derived discriminative features 
achieved good performance in distinguishing individu-
als suffering from VM from HCs and may thus serve 
as objective and effective biomarkers of VM. However, 
despite the potential value demonstrated by our findings, 
it should be noted that this study is preliminary in nature, 
and further research is required to validate the generaliz-
ability of the present results.

Our study has several limitations. First, the sample 
size was only relatively larger than those of the existing 
research. Further studies with more participants would 
be helpful to verify the present results. Second, the sub-
jects were recruited from a single center, and the robust-
ness of the proposed model and validity of the results 
require further validation and optimization in a multi-
center dataset. Finally, the cross-sectional study design 
limited us from inferring the causal relationship between 
abnormalities in the morphological similarity network 
and VM attacks.

Conclusion
Based on single-subject GM covariance connectome 
analyses, this study revealed that patients with VM had 
altered global and regional topological properties, as well 
as reduced network connections in a specific compo-
nent, reflecting potential dizziness, pain, and emotional 
dysfunctions. These findings would enhance our current 
understanding of VM from the viewpoint of morpho-
logical similarity network. The identified discriminative 
SCN features could serve as individualized neuroimaging 
markers of VM.
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