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Abstract
Migraine, a primary headache disorder whose mechanism remains incompletely understood, appears to involve 
the activation of the trigeminovascular system (TS) during attacks. Research suggests that inflammatory processes 
mediated by the immune system may play a role in migraine pathophysiology. Neuroinflammation is often 
associated with migraine attacks, with cytokines serving as crucial mediators in the process. Elevated levels of 
pro-inflammatory cytokines, such as interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha 
(TNF-α), have been observed in the blood and cerebrospinal fluid of individuals experiencing migraine attacks. 
These cytokines have the capacity to sensitize pain pathways in the brain, thereby increasing sensitivity to pain 
stimuli. This phenomenon, known as central sensitization, is believed to contribute to the intensity and persistence 
of migraine pain. Kynurenines, endogenous mediators of glutamatergic mechanisms, can significantly influence the 
pathophysiology of primary headache disorders. The kynurenine system is collectively known as the kynurenine 
pathway (KP), which can act on multiple receptors, such as glutamate receptors, aryl hydrocarbon receptors (AhRs), 
G protein-coupled receptors 35 (GPR35), and α-7 nicotinic acetylcholine (α7 nACh) receptors. These receptors 
are also found on various cells of the immune system, so the role of the KP in the pathomechanism of primary 
headaches may also be mediated through them. In this review, our goal is to show a possible link between the 
receptors of the KP and immune system in the context of inflammation and migraine. Migraine research in recent 
years has focused on neuropeptides, such as calcitonin gene-related peptide (CGRP) and pituitary adenylate 
cyclase-activating polypeptide (PACAP) as potential pathogenic factors and possible therapeutic approaches. These 
peptides share many similarities in their characteristics and roles. For instance, they exhibit potent vasodilation, 
occur in both the peripheral and central nervous systems, and play a role in transmitting nociception and 
neurogenic inflammation. The investigation of potential connections between the aforementioned neuropeptides 
and the kynurenine pathway could play a significant role in uncovering the pathomechanism of migraine and 
identifying new drug candidates.
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Background
Migraine is a primary headache disorder marked by 
moderate to severe unilateral pain that pulsates or throbs, 
often accompanied by symptoms like nausea/vomiting or 
sensitivity to light and sound. Headaches can be triggered 
by various factors including weather, alcohol, stress, or 
hormonal fluctuations. The disease ranks among the 
most prevalent neurological conditions, carrying sig-
nificant morbidity and correlating with a substantial eco-
nomic burden [1, 2].

Migraine consists of four phases. The prodrome phase 
initiates up to 24 h before the headache occurs. An aura 
serves as an indication of an impending migraine head-
ache, presenting with sensory, motor, and/or speech 
symptoms. This phase can endure for up to 60 min or as 
briefly as five. It is possible to experience both the aura 
and the headache simultaneously. A migraine headache 
typically persists for a duration ranging from 4 h to 72 h. 
The postdrome stage typically extends for a few hours to 
as long as 48 h. Symptoms resemble those of an alcohol-
induced hangover, hence the term “migraine hangover” 
for this phase [3].

While there is ongoing debate about the precise patho-
physiological mechanism of migraine, the prevailing the-
ory suggests it is a disorder impacting sensory processing 
in the brain.

Towards the end of the 20th century, Moskowitz and 
his colleagues proposed the trigeminovascular hypoth-
esis of migraine, emphasizing the crucial involvement of 
the trigeminal nerve and its axonal projections contain-
ing vasoactive neuropeptides to the meninges and blood 
vessels [4]. The correlation between the activation of 
both the peripheral and central branches of the trigemi-
novascular system (TS) with cortical spreading depres-
sion and the activity of specific brainstem nuclei leads us 
to the conclusion that migraine could be attributed to a 
disrupted function of the neuronal components within 
the TS, the brainstem, and the cortex. At the core of this 
mechanism lies the activation and senzitization of the 
TS [2]. Nowadays it is believed that headache primarily 
arises from TS activation, leading to neurogenic vaso-
dilation and meningeal inflammation [5]. It is clear that 
inflammation contributes to headache onset. The fact 
that non steroidal anti-inflammatory drugs provide only 
partial relief from headaches suggests that prostaglan-
dins are involved in sensitizing nociceptors. The activa-
tion of mast cells already present in the meninges, along 
with the subsequent release of inflammatory molecules 
like interleukin-1β (IL-1 β), interleukin-6 (IL-6), tumor 
necrosis factor-α (TNF- α), and various chemokines, is 
suggested to significantly influence the development of 
migraine headaches. Additionally, the release of cyto-
kines by glial cells is also believed to contribute to the 
mechanism of migraine. Studies indicate that cortical 

spreading depression can trigger inflammasome acti-
vation within the brain tissue, further reinforcing this 
involvement [6–8]. The vascular theory will likely remain 
prominent for a few more years, further refining periph-
eral drug targets with increasing precision. Although the 
source of the pain, the ultimate trigeminal nociceptor, is 
located around the meningeal (and probably also corti-
cal) vessels, the pathogenesis of migraine is not primar-
ily due to a defective (cranial) vascular system. For this 
nociceptor to be activated, a central generator, specifi-
cally the limbic system including the hypothalamus, is 
required [9]. The latest MRI studies suggest that the lim-
bic system and sensory system play an important role in 
the pathophysiology of migraines. In this study, it was 
demonstrated that the limbic regions, especially the orbi-
tofrontal cortex and temporal pole, showed an expansion 
of the connectome manifold. These findings may suggest 
greater differentiation between connectivity within the 
limbic regions compared to the rest of the brain. Con-
versely, the sensorimotor regions exhibited contractions 
in manifold eccentricity, indicating more integrated con-
nectivity patterns within the brain [10].

Recent evidence indicates that significant contributors 
to headache development are the neuropeptides calcito-
nin gene-related peptide (CGRP) and pituitary adenylate 
cyclase activating polypeptide (PACAP) [11, 12]. These 
peptides share many similarities in their characteristics 
and roles. For example, they act as potent vasodilators, 
are found in both the peripheral and the central nervous 
systems (CNS), and contribute to the transmission of 
pain sensation and neurogenic inflammation [13]. Con-
sequently, they have become significant focal points in 
the therapeutic advancements for migraine. In 2004, the 
first CGRP receptor antagonists demonstrated effective 
migraine termination in humans. However, currently, 
numerous other anti-CGRP treatments are either in clin-
ical trials or undergoing development. PACAP1–38 also 
plays a pivotal role in migraine, as suggested by various 
preclinical and clinical investigations [14–16] However, 
there are fewer confirmed outcomes specifically focused 
on PACAP1–38 antibody therapies. PACAP receptor 
PAC1 monoclonal antibody (mAb), AMG 301, showed 
no migraine prevention benefit, while the PACAP ligand 
mAb, Lu AG09222, notably reduced monthly migraine 
days in a phase 2 trial. The similar behavior of these pep-
tides raises the possibility that anti-PACAP1–38 treat-
ments could offer a therapeutic benefit for migraine 
sufferers who do not respond to anti-CGRP therapies 
[17–19] [insert Fig. 1.].

Despite intensive research, the exact sequence of events 
during headache episodes and the relative significance 
of central and peripheral mechanisms remain unclear. 
With the exception of recently approved mAb therapies, 
much of the preventive treatment relies on empirical 
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observations rather than a comprehensive understanding 
of the pathophysiology.

While migraine is typically characterized by a homo-
geneous clinical symptom complex, it is most often 
underpinned by heterogeneous molecular mechanisms. 
In a previous study, we detected 144 genes with differ-
ing expression levels in peripheral blood mononuclear 
cells between samples from individuals with headache 
and those without, and 163 genes between symptom-
free patients and controls. Network analysis indicated 
enrichment in pathways related to inflammation, cyto-
kine activity, and mitochondrial dysfunction in both 
headache-afflicted and headache-free samples compared 
to controls [20].

The immune system’s involvement in migraine has 
garnered significant attention in recent research. Emerg-
ing evidence suggests that immune dysregulation and 
inflammation may play key roles in migraine pathophysi-
ology. Specifically, immune cells, such as mast cells and 
microglia, have been implicated in triggering and perpet-
uating migraine attacks. Mast cells release inflammatory 
mediators such as histamine and cytokines in response 
to various triggers. These mediators can activate and 
sensitize nearby pain-sensing nerve fibers, contribut-
ing to the initiation and propagation of migraine pain. 

Microglia become activated in response to inflammatory 
signals. Once activated, microglia release pro-inflamma-
tory molecules and neuroexcitatory substances, further 
promoting neuronal sensitization and pain amplification 
in migraine. Additionally, cytokines and other immune 
modulator molecules have been found to be dysregu-
lated in migraine patients, indicating a broader immune 
system involvement in the disorder. Understanding 
the intricate interplay between the immune system and 
migraine is crucial for developing targeted therapies that 
can effectively modulate immune responses and alleviate 
migraine symptoms [21–23].

The structure of the kynurenine pathway (KP)
Tryptophan (Trp) is a crucial amino acid, essential for 
brain function, serving as the precursor for serotonin 
(5-HT). However, over 90% of Trp in mammalian cells 
metabolizes in the KP rather than towards 5-HT (Fig. 1). 
Kynurenic acid (KYNA), a prominent KP product discov-
ered by Justus von Liebig in 1853, acts as an endogenous 
glutamate receptor antagonist with neuroprotective 
effects. KYNA is synthesized by kynurenine aminotrans-
ferases (KATs) from L-kynurenine (L-KYN), derived from 
N-formylkynurenine through the action of formamidase 
enzyme. Notably, L-KYN can convert to anthranilic acid 

Fig. 1 Theoretical involvement of inflammatory molecules in migraine attack: When immune cells become activated, they modify the microenvironment 
around the TS by releasing inflammatory substances cytokines, chemokines and neuropeptides. These substances prompt the widening of blood vessels 
in the dura mater and affect the integrity of tight junctions between endothelial cells. Through this process, activated trigeminal neurons send signals to 
higher brain regions, leading to the sensation of pain and heightened sensitivity. TNC: nucleus trigeminus caudalis, TRG: trigeminal ganglion PAG: periaq-
ueductal grey, LC: locus coeruleus TH: thalamus, SSC: somatosensory cortex
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(ANA) via kynureninase (3-HAO) and to 3-hydroxykyn-
urenine (3-HK) through kynurenine 3-monooxygenase 
(KMO), in addition to KYNA. KMO, a mitochondrial 
protein in eukaryotic cells, resides in the outer mito-
chondrial membrane. ANA can further transform into 
3-hydroxyanthranilic acid (3-HAA) with the assistance 
of 3-hydroxyanthranilic acid hydroxylase. Additionally, 
3-HK may convert to 3-HAA via kynureninase, or to 
xanthurenic acid. 3-HAA, when exposed to 3-hydroxyan-
thranillic acid 3,4-dioxygenase, can further convert into 
quinolinic acid (QUIN). The final step in the KP involves 
the transformation of QUIN into nicotinamide adenine 
dinucleotide (NAD+) through quinolinic acid phospho-
ribosyl transferase. NAD+ plays a crucial role in mito-
chondrial energy management and redox reactions. In 
contrast to KYNA, QUIN serves as an endogenous glu-
tamate receptor agonist produced by microglia. QUIN 
may induce inflammation, and neuronal dysfunction in 
the CNS [24]. Research indicates that KP enzymes and 
substances play pivotal roles in the pathomechanisms of 
neurological disorders, such as depressive disorders [24, 

25], schizophrenia [26], and migraine [27, 28] [Insert 
Fig. 2.].

Receptors of the KP and their roles in the immune system
Kynurenines exert their effects on various receptors, 
including dose-dependent interactions with glutamate 
receptors, aryl hydrocarbon receptors (AhRs), G protein-
coupled receptors 35 (GPR35), and α-7 nicotinic acetyl-
choline receptors (α7 nAChRs) (Fig. 3) [Insert Fig. 3.].

Glutamate receptors
Glutamate receptors constitute a class of neurotrans-
mitter receptors present in the CNS of animals, includ-
ing humans. Being the most abundant excitatory 
neurotransmitter in the brain, glutamate and its recep-
tors play a fundamental role in diverse aspects of neuro-
nal communication, and synaptic plasticity. Two major 
categories encompass glutamate receptors: ionotropic 
glutamate receptors, functioning as ligand-gated ion 
channels, mediating fast synaptic transmission, and 
including N-methyl D-aspartate (NMDA receptors), 

Fig. 2 The kynurenine pathway. This figure shows the main metabolites and enzymes of the KP. Abbreviations: 3-HA—3-hydroxyanthranilic acid, 
3-HK—3-hydroxykynurenine, 5-HT—serotonin, ANA—anthranilic acid, KYNA—kynurenic acid, L-KYN—L-kynurenine, NAD+—nicotinamide adenine di-
nucleotide, QUIN—quinolinic acid, Trp—tryptophan, XA—xanthurenic acid, IDO—indoleamine 2,3-dioxygenase, TDO—tryptophan 2,3-dioxygenase, 
KATs—kynurenine aminotransferases, KMO—kynurenine 3-monooxygenase
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α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid 
AMPA receptors, and kainate receptors. The other types 
of glutamate receptors are metabotropic glutamate recep-
tors, which are G protein-coupled receptors linked to ion 
channels through intracellular signaling pathways, modu-
lating synaptic transmission, and influencing neuronal 
excitability. KYNA acts as an antagonist at the strych-
nine-insensitive glycine-binding site of NMDA receptors 
at low doses [29] and inhibits the glutamate-binding site 
at higher doses [30]. Additionally, KYNA has antagonistic 
effects on kainate and AMPA receptors, with its impact 
on AMPA receptors being concentration-dependent, 
stimulating them at nanomolar and micromolar con-
centrations while inhibiting them between micromolar 
and millimolar concentrations [31, 32]. KYNA is often 
referred to as a “Janus-faced” molecule because, like the 
Roman god Janus, it has two distinct and often contra-
dictory aspects or functions [33]. Taken together, KYNA 
exhibits dual properties within biological systems.

Glutamate receptors are also found on various periph-
eral immune cells, including T cells [34], macrophages 
[35, 36], and dendritic cells [37]. Inflammation can lead 
to dysregulation of glutamate signaling, which may con-
tribute to neuronal damage and neuroinflammation. 
Glutamate receptors, particularly NMDA receptors, are 
expressed on microglial cells [38], the resident immune 
cells of the CNS. Furthermore, activation of these recep-
tors can modulate microglial function [39], influencing 
the release of pro-inflammatory cytokines and reactive 
oxygen species (ROS) [40]. On the other hand, glutamate 

receptors on astrocytes, another type of glial cell, can also 
modulate inflammatory responses. In addition to this, 
glutamate signaling in astrocytes can lead to the release 
of inflammatory mediators such as cytokines and che-
mokines, contributing to neuroinflammation [41]. To 
bring together, glutamate receptors are found within the 
immune system, and the KP plays a role in regulating the 
immune system via these receptors.

Aryl hydrocarbon receptors
AhRs, a family of proteins found in various species, 
including humans, are ligand-activated transcription fac-
tors that can bind to aromatic hydrocarbons like diox-
ins and polycyclic aromatic hydrocarbons. AhRs also 
regulate the expression of genes related to indoleamine 
2,3-dioxygenase (IDO), and they have a crucial role in 
inflammation processes [42]. The activation of AhRs 
leading to the induction of IDO1 holds significance, as 
IDO1 plays a crucial role in producing L-KYN through 
the breakdown of Trp, thereby establishing a positive 
feedback loop. Furthermore, AhRs have been observed 
to positively control the expression of SLC7A5 [43, 44], 
which is a transporter of essential amino acids. The 
upregulation of SLC7A5 in response to AhR activation by 
L-KYN is likely to enhance the entry of L-KYN into cells, 
presenting an additional feed forward mechanism for 
AhR pathway activation in the context of inflammation. 
Furthermore, kynurenine’s activation of AhR possesses 
immunosuppressive qualities affecting both innate and 
adaptive immunity. When kynurenine binds to AhRs, it 

Fig. 3 Possible receptors where KP metabolites could bind. The figure offers a summary of potential receptors in the immune system that could interact 
with the KP. Recent research has brought up questions regarding its impact on the alpha-7 nicotinic receptors
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suppresses inflammatory reactions triggered by LPS in 
macrophages and enhances endotoxin tolerance, as evi-
denced by studies [45, 46]. Additionally, in the presence 
of transforming growth factor-β, L-KYN diminishes the 
differentiation of T cells into highly inflammatory Th17 
cells while promoting the formation of Foxp3 + regulatory 
T cells, as demonstrated by Mezrich’s team [47]. In addi-
tion to this, the AhR pathway likely plays a role in various 
immune processes crucial for the host’s intestinal homeo-
stasis and the maintenance of an optimal microbiome 
[48]. Additionally, it may contribute to innate immune 
reactions against microbial infiltration of barrier tissues 
[49]. Moreover, AhRs might influence the differentiation 
and functionality of both CD4 + and CD8 + T cells [50], 
potentially influencing chronic autoimmune damage to 
CNS neurons [51]. As demonstrated above, the function 
of AhRs in the immune system is already comprehen-
sively understood, and the KP might have the capacity to 
impact immunological processes via their modulation.

GPR35
Members of the G protein-coupled receptor family, 
GPR35 exhibit significant expression within various 
immune cells including eosinophils, monocytes, and 
natural killer-like T cells, hinting at their potential physi-
ological significance in these cell types [52]. Moreover, 
their upregulation in activated neutrophils may poten-
tially enhance their migratory capabilities [53]. Stud-
ies have shown that GPR35 activation can influence the 
production of pro-inflammatory cytokines, such as TNF-
α, IL-6, and IL-1β [54]. Activation of GPR35 has been 
linked to both pro-inflammatory and anti-inflammatory 
effects, depending on the cellular context and the specific 
ligands involved. It is well-known that 5-HT and melato-
nin, which are metabolites of Trp, are widely recognized 
as ligands for GPRs. In the case of GPR35, kynurenines 
may bind to these receptors and initiate signaling cas-
cades within cells, and activate the receptors in micro-
molar concentrations [55]. Despite the progress made in 
understanding the interaction between kynurenines and 
GPR35, there are still many unanswered questions. Fur-
ther research is needed to elucidate the specific mecha-
nisms underlying their effects and to determine their 
potential therapeutic applications. Additionally, the 
development of selective ligands targeting GPR35 could 
help dissect their physiological roles and facilitate the 
translation of findings into clinical interventions.

α7 nAChRs
α7 nAChRs, a type of nicotinic acetylcholine recep-
tors, play a crucial role in neurotransmission within the 
CNS. Nicotinic receptors respond to the neurotransmit-
ter acetylcholine with their name derived from the term 
nicotine. The effects of KYNA on α7 nAChRs have been 

put into question, as Stone’s research suggests conflict-
ing results on this interaction [56]. Activation of the α7 
nAChRs has been associated with potent anti-inflamma-
tory effects, since these receptors are located in macro-
phages [57], dendritic cells [58], T-cells [59], B-cells [60], 
natural killer cells [61], microglia [62], and astrocytes 
[63]. Stimulation of these receptors by their endogenous 
ligand, acetylcholine, or by other agonists can lead to 
the suppression of pro-inflammatory cytokine produc-
tion, including TNF-α [64], IL-1β [65], IL-6 [66], and 
interferon-gamma (IFN-γ) [67]. This anti-inflammatory 
response helps to dampen excessive immune activa-
tion and tissue damage during inflammation. One of the 
key mechanisms by which α7 nAChRs exert their anti-
inflammatory effects is through the inhibition of nuclear 
factor-kappa B (NF-κB) signaling. NF-κB is a transcrip-
tion factor that regulates the expression of many pro-
inflammatory genes. Activation of α7 nAChRs inhibits 
NF-κB activation [68], thereby reducing the expression 
of pro-inflammatory cytokines and chemokines. Fur-
thermore, α7 nAChRs activation influences the function 
of various immune cells involved in inflammation. It can 
modulate the activity of macrophages and monocytes, 
leading to a shift from a pro-inflammatory M1 phenotype 
to an anti-inflammatory M2 phenotype [69]. Addition-
ally, α7 nAChRs activation can suppress the activation 
and proliferation of T cells [70] and inhibit the matura-
tion and activation of dendritic cells [71, 72], thus regu-
lating adaptive immune responses. In addition to their 
expression on immune cells, α7 nAChRs are also pres-
ent on neurons in the peripheral nervous system, and 
the CNS [73]. Activation of α7 nAChRs on neurons can 
modulate neurotransmitter release, including the release 
of acetylcholine itself [74, 75], leading to the activation of 
the cholinergic anti-inflammatory pathway. This pathway 
involves the release of acetylcholine, which then acts on 
α7 nACh receptor-expressing immune cells to suppress 
inflammation [74]. Beyond its direct anti-inflammatory 
effects, α7 nAChRs activation has been implicated in 
tissue protection and repair mechanisms. Studies have 
shown that α7 nAChR activation can promote cell sur-
vival, angiogenesis, and tissue regeneration in various 
organs, including the lung [76], and brain [77], following 
injury or inflammation.

Receptors of the KP and their roles in the pathophysiology 
of migraine
The aforementioned receptors play pivotal roles in 
migraine pathomechanisms, as summarized previ-
ously [78]. Glutamate and its receptors are integral to 
the pathophysiological processes underlying migraine. 
Elevated extracellular glutamate levels can precipitate 
cortical spreading depression [79], a phenomenon con-
sidered the neurophysiological basis for migraine aura 
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and implicated in activating migraine pain pathways. 
Additionally, these receptors are localized in the trigemi-
nal ganglion (TRG) and central terminals of trigeminal 
neurons [80]. Activation of glutamate receptors height-
ens neuronal excitability and neurotransmitter release, 
thereby facilitating transmission and amplification of 
pain signals.

Concurrently, AhR receptors are emerging as signifi-
cant contributors in the intricate landscape of migraine 
pathophysiology. They influence chronic migraine devel-
opment by modulating T cells in rodent models [81]. Fur-
thermore, GPR35 activation has been shown to regulate 
the secretion of pro-inflammatory cytokines [54], poten-
tially modulating the inflammatory environment linked 
to migraine. Additionally, GPR35 modulates pain percep-
tion [82], influencing nociceptor function and pain sig-
naling [82, 83], presenting it as a potential target for pain 
management in migraine patients. Moreover, α7 nAChR, 
known for its anti-inflammatory properties, may allevi-
ate inflammatory responses associated with migraine. 
Activation of α7 nAChR has the potential to diminish the 
release of inflammatory mediators from glial cells and 
neurons [84], contributing to the mitigation of migraine 
symptoms. Furthermore, α7 nAChR modulates pain 
pathways and is expressed in brain regions implicated 
in pain processing, including the TG [85], pivotal in 
migraine pathophysiology.

The involvement of the KP in inflammation as a potential 
pathomechanism in migraine
Inflammation indeed plays a significant role in the 
pathomechanism of migraine, contributing to the ini-
tiation, propagation, and persistence of migraine attacks. 
Activation of trigeminal nerve and its branches releases 
neuropeptides such as substance P, CGRP, and neuro-
kinin A [86, 87]. These neuropeptides cause vasodila-
tion and inflammation of blood vessels, leading to pain 
and other migraine symptoms. On the other hand, dur-
ing migraine attacks, there is an increase in the release 
of pro-inflammatory cytokines such as IL-1β, IL-6, and 
TNF-α [88]. These cytokines can sensitize pain receptors 
and promote neuroinflammation, exacerbating migraine 
symptoms. In addition to this, inflammation can disrupt 
the blood-brain barrier (BBB), which normally regulates 
the passage of substances between the bloodstream and 
the brain. BBB dysfunction allows inflammatory media-
tors and immune cells to enter the brain, further pro-
moting neuroinflammation and contributing to migraine 
pathophysiology [89].

While its exact role of inflammation in migraine is 
still being elucidated, emerging research suggests that 
the KP and its downstream metabolites may contribute 
to migraine pathophysiology through various mecha-
nisms. Kynurenine metabolites, particularly KYNA and 

QUIN, have been implicated in neuroinflammatory pro-
cesses [90]. These metabolites can modulate the activity 
of immune cells, such as microglia and astrocytes [91], 
leading to the release of pro-inflammatory cytokines and 
chemokines in the CNS.

Multiple animal models exist for studying migraine 
[92]. Previous studies conducted by our research group 
demonstrated that the nitric oxide donor nitroglycerin 
(NTG) can elevate the protein levels of NF-κB, and cyclo-
oxygenase-2 (COX-2) in rats, which are recognized as 
inflammatory markers [93]. Furthermore, NTG has been 
observed to influence numerous crucial enzymes within 
the KP in this particular model [94]. Another trigeminal 
activation model involves applying inflammatory agents 
to the dura mater, replicating neurogenic inflammation 
observed in rodents, which is pivotal in the pathomech-
anism of migraine. Commonly utilized for this purpose 
are Complete Freund’s Adjuvant (CFA) and a blend of 
inflammatory mediators known as inflammatory soup 
(IS). Previously, we demonstrated that applying IS to the 
dura mater induces a more intense, short-term c-Fos acti-
vation compared to CFA [95]. Additionally, our research 
revealed that both sumatriptan and KYNA can mitigate 
the effects induced by IS [96], confirming the involve-
ment of the KP in neurogenic inflammation within a tri-
geminal activation model. CFA is additionally employed 
to chemically stimulate the orofacial area in animals 
probably by inducing inflammation [97]. In this model, 
we found altered KP components, providing further evi-
dence that the KP has a role in trigeminal activation and 
inflammation [98]. On the other hand, inducing dural 
inflammation with an IS and CFA has been demonstrated 
to provoke migraine-like symptoms, including periorbital 
sensitivity [99, 100]. Another model used to study tri-
geminal pain is the orofacial formalin or CFA model that 
can induce a biphasic nociceptive response and inflam-
mation [101]. In this model, our research group has 
demonstrated the effectiveness of KYNA analogue and 
probenecid in reducing both the immunohistochemi-
cal and behavioral alterations induced by formalin [102, 
103]. In summarizing the animal data, various trigeminal 
activation models have effectively employed the KP sub-
stances to mitigate inflammatory processes.

While animal studies show promising results, it is 
important to emphasize that these findings may not 
directly translate to humans. Although the animal data 
suggest the potential for future drug therapies, develop-
ing these therapies will require extensive human research.

The KP is closely linked to the production of ROS and 
oxidative stress. Elevated levels of kynurenine metabolites 
have been associated with increased oxidative damage in 
various neurological disorders [104], including migraine 
[105]. Oxidative stress can exacerbate neuroinflamma-
tion, promote neuronal dysfunction, and contribute to 
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migraine pathophysiology. The KP has immunomodu-
latory effects, influencing the function of immune cells 
and the production of inflammatory mediators through 
their receptors. Immune-mediated processes may con-
tribute to neuroinflammation and migraine susceptibility. 
Altered Trp metabolism and the KP activity have been 
observed in patients with different types of headaches 
[106–109], suggesting a potential link between immune 
dysregulation and migraine pathogenesis. Targeting 
the KP has emerged as a potential therapeutic strategy 
for migraine treatment. Modulating the levels or activ-
ity of kynurenine metabolites, such as by using enzyme 
inhibitors or receptor antagonists, might help allevi-
ate neuroinflammation and reduce migraine severity. In 
summary, the KP and its metabolites play complex roles 
in the inflammation associated with migraine. Further 
research into the specific mechanisms underlying these 
effects could lead to the development of novel therapeu-
tic approaches for migraine management.

Understanding the role of inflammation in migraine 
pathophysiology has led to the development of novel 
treatment approaches targeting inflammatory path-
ways. For instance, medications that block CGRP or its 
receptors have shown efficacy in migraine prevention 
by reducing neurogenic inflammation. Additionally, life-
style modifications aimed at reducing inflammation, 
such as stress management and dietary changes, may 
complement pharmacological interventions in migraine 
management.

Inhibiting neuropeptides: a new frontline in migraine 
therapy
In recent years, research on migraine has focused on 
neuropeptides as potential contributors to the condi-
tion’s causes and as promising therapeutic options. 
Newly approved CGRP mAbs exhibit responder rates 
of 27–71%, while CGRP receptor inhibitors show rates 
ranging from 56 to 71%. To address the need for new 
therapeutic avenues, researchers are investigating 
the potential of PACAP from the secretin family, as a 
groundbreaking migraine treatment. Preclinical mod-
els have revealed PACAP’s impact on the trigeminal 
system, which is implicated in headache disorders. A 
previous study indicates that electrical stimulation of tri-
geminal ganglion (ES-TRG) led to a significant increase 
in PACAP1–38 immunoreactivity in the plasma 180 min 
post-treatment, and elevated levels of PACAP1–38 and 
PACAP1–27 immunoreactivity in the nucleus trigemi-
nus caudalis (TNC). Apart from ES-TRG, intraperitoneal 
administration of NTG also triggered a rise in PACAP1–
38 and PACAP1–27 expression in the TNC 180  min 
after treatment [12]. Another study demonstrated that 
administering PACAP1–38 resulted in heightened CGRP 
expression in the TNC, suggesting a possible correlation 

between CGRP release and PACAP1–38 [110]. These 
results are consistent with our previous study; follow-
ing TS activation, there is a simultaneous increase in the 
release of PACAP and CGRP. Overexpression of neuro-
peptides correlated with mechanical allodynia [97].

Repeated electrical stimulation of the dura mater led to 
increased expression levels of CGRP and PACAP in the 
TRG and TNC of rats, with variations depending on the 
duration of stimulation (1, 3, and 7 days). This indicates 
that the frequency of stimulations may impact the release 
and actions of neuropeptides [111]. Activated microglial 
cells were observed in the ipsilateral TNC and cervical 
dorsal horn 72 h after administering orofacial CFA treat-
ment to rats. These activated microglial cells might play a 
role in central sensitization and nociception mechanisms 
[112–114]. There is evidence suggesting that an antago-
nist of the P2 × 4 microglial receptor inhibited NTG-
induced c-Fos expression and CGRP release in the TNC, 
subsequently alleviating hyperalgesia [115].

The endogenous antagonists of the NMDA receptor, 
KYNA, and its synthetic analog SZR-72, demonstrated 
the ability to inhibit the overexpression of PACAP at both 
the proteome and transcriptome levels. Another interest-
ing finding of this study is that the expression levels of 
PACAP are significantly different between the noncom-
petitive NMDA receptor antagonist MK-801-, and the 
SZR-72-treated groups, which raises the possibility of the 
involvement of additional KYNA targets besides NMDA. 
Apart from NMDA glutamate receptor, studies indicate 
that KYNA also influences AMPA, kainate, AchRs, G 
protein-coupled, and opiate receptors. This suggests that 
KYNA and SZR-72 hold promise as potential new drug 
candidates for PACAP-targeted migraine therapy in the 
future [19, 116].

Investigating potential drawbacks of targeting the KP in 
migraine treatment
The KP has garnered attention in migraine research due 
to its potential roles in neuroinflammation and pain mod-
ulation, as we discussed earlier. While much of the focus 
has been on its therapeutic potential, there are consider-
ations regarding negative data and potential side effects 
associated with targeting this pathway in migraine treat-
ment. Some metabolites within the KP, such as QUIN, 
are neurotoxic at high concentrations and can contribute 
to neuronal damage and neuroinflammation [117, 118]. 
It follows that elevated levels of neurotoxic metabolites 
could potentially exacerbate neurological symptoms in 
migraine patients. Pharmacological targeting of spe-
cific enzymes or receptors within the KP may lead to 
unintended side effects. For example, drugs designed 
to modulate KP activity could affect other physiologi-
cal processes, impacting overall health and potentially 
exacerbating migraine symptoms. On the other hand, 
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responses to the KP modulation can vary among indi-
viduals. Genetic factors, environmental influences, and 
variations in the KP metabolite levels may contribute to 
differing responses and potential side effects in migraine 
patients. Despite promising preclinical and clinical find-
ings [117], clinical trials targeting the KP in migraine are 
limited. The efficacy and safety of the KP-targeted thera-
pies specifically for migraine management are still under 
investigation, and more research is needed to fully under-
stand their potential negative effects. However, it should 
be noted that there are several KYNA analogues known 
not to convert to QUIN. Therefore, further studies with 
these analogues may be the way forward [117].

Conclusion
In summary, the KP plays a crucial role in the 
pathomechanism of migraine (Fig.  4) [Insert Fig.  4]. KP 
receptors are not only present in the nervous system but 
also in the immune system, suggesting potential effects 
of KP in both domains [118]. Although the exact role of 
the immune system in migraine development remains 
incompletely understood, inflammation is undoubtedly 

implicated in migraine pathogenesis. Currently, migraine 
treatment revolves around neuropeptides, which are 
signaling molecules produced by neurons, can modu-
late various aspects of immune function. They can act as 
immunomodulators, influencing the activity of immune 
cells and can regulate the release of cytokines. On the 
other hand, the immune system can also influence neuro-
peptide activity by regulating their synthesis and release. 
This bidirectional communication between neuropep-
tides and the immune system plays a crucial role in vari-
ous physiological processes, including inflammation, and 
pain modulation. Dysregulation of this communication 
has been implicated in the pathogenesis of numerous 
diseases, including autoimmune disorders, inflammatory 
conditions, and neurological disorders such as migraine.
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Fig. 4 This figure outlines the potential targets of the KP within the nervous system. KP receptors are distributed across both the central and peripheral 
nervous systems, indicating that potential targets of the KP are found in both regions. Abbreviations: KYNA—kynurenic acid, L-KYN—L-kynurenine, 
Trp—tryptophan
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