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Abstract
Background The initiation of migraine headaches and the involvement of neuroinflammatory signaling between 
parenchymal and meningeal cells remain unclear. Experimental evidence suggests that a cascade of inflammatory 
signaling originating from neurons may extend to the meninges, thereby inducing neurogenic inflammation and 
headache. This review explores the role of parenchymal inflammatory signaling in migraine headaches, drawing upon 
recent advancements.

Body Studies in rodents have demonstrated that sterile meningeal inflammation can stimulate and sensitize 
meningeal nociceptors, culminating in headaches. The efficacy of relatively blood-brain barrier-impermeable anti-
calcitonin gene-related peptide antibodies and triptans in treating migraine attacks, both with and without aura, 
supports the concept of migraine pain originating in meninges. Additionally, PET studies utilizing inflammation 
markers have revealed meningeal inflammatory activity in patients experiencing migraine with aura, particularly 
over the occipital cortex generating visual auras. The parenchymal neuroinflammatory signaling involving neurons, 
astrocytes, and microglia, which eventually extends to the meninges, can link non-homeostatic perturbations in 
the insensate brain to pain-sensitive meninges. Recent experimental research has brought deeper insight into 
parenchymal signaling mechanisms: Neuronal pannexin-1 channels act as stress sensors, initiating the inflammatory 
signaling by inflammasome formation and high-mobility group box-1 release in response to transient perturbations 
such as cortical spreading depolarization (CSD) or synaptic metabolic insufficiency caused by transcriptional changes 
induced by migraine triggers like sleep deprivation and stress. After a single CSD, astrocytes respond by upregulating 
the transcription of proinflammatory enzymes and mediators, while microglia are involved in restoring neuronal 
structural integrity; however, repeated CSDs may prompt microglia to adopt a pro-inflammatory state. Transcriptional 
changes from pro- to anti-inflammatory within 24 h may serve to dampen the inflammatory signaling. The extensive 
coverage of brain surface and perivascular areas by astrocyte endfeet suggests their role as an interface for 
transporting inflammatory mediators to the cerebrospinal fluid to contribute to meningeal nociception.
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Background
Pain typically accompanies an inflammatory response 
of varying intensity at the site where the nociceptive 
fibers are activated. Consistent with this observation, 
migraine headache is proposed to arise from the activa-
tion of nociceptive trigeminocervical afferents due to a 
sterile meningeal inflammatory process [1]. Meningeal 
headaches triggered by meningeal infections share simi-
larities with migraine headaches, such as the throbbing 
nature of the headache, photophobia, and phonopho-
bia. However, they are significantly more intense and are 
associated with evident inflammatory cell reactions in 
the cerebrospinal fluid (CSF) and gadolinium contrast 
enhancement in MRI scans [2]. The confined and mild 
sterile inflammatory process thought to cause migraine 
headaches either directly originates within the meninges 
such as in the case of volatile irritants like umbellulone 
of the headache tree (Umbellularia californica) or be 
triggered by stressful brain perturbations such as aura 
[3, 4]. However, the mechanism by which benign but 
stressful brain events underlying migraine prodrome or 
aura can activate meningeal nociceptors remains unclear. 
This has led to the hypothesis of episodic central dys-
regulation in pain pathways as the driving force behind 
migraine headaches, despite limited evidence [5]. The 
absence of aura or prodrome in a considerable propor-
tion of migraine attacks has been proposed to support 
this perspective. Conversely, the effectiveness of anti-
calcitonin gene-related peptide (CGRP) antibodies and 
sumatriptan, which primarily target meningeal nocicep-
tors and trigeminal ganglia located outside the blood-
brain barrier (BBB), in treating migraine attacks with and 
without aura has bolstered the idea that migraine pain 
originates in the meninges [1, 6]. This is because these 
agents have limited access to central pathways but effec-
tively target the meningeal nociceptors, despite ongoing 
controversy [1, 6–8]. Central pathways, however, do play 
a crucial role in modulating peripheral nociceptive input, 
as evidenced by significant variability in pain threshold 
and perception depending on individual’s mental and 
mood status, notable placebo effect, pain suppression 
by stimulating the periaqueductal gray, and non-painful 
auras [5, 6, 9]. Evidence from animal studies indicates 
that parenchymal neuroinflammatory signaling involv-
ing neurons, astrocytes, and microglia, which eventually 
extends to the meninges [10–18], could potentially link 

non-homeostatic perturbations in the insensate brain to 
pain-sensitive meninges. Recent clinical imaging studies 
have provided further supporting evidence for the pres-
ence of parenchymal as well as meningeal inflammation 
in migraine patients [19, 20].

Cortical spreading depolarization (CSD), the neuro-
physiological event underlying migraine aura [21], is 
suggested to potentially trigger headaches, although this 
remains a topic of debate, particularly due to the chal-
lenges associated with observing and directly linking 
it with headache occurrences in humans [1, 10, 22–24]. 
Notably, aura manifests contralaterally to the side of 
the headache, supporting the notion that CSD-induced 
parenchymal algesic signals may propagate to the over-
lying meninges, initiating the headache. In other words, 
disturbances caused by CSD in the occipital cortex result 
in visual aura primarily on the lateral aspect of the con-
tralateral visual field. Meanwhile, trigeminal nocicep-
tive signals originating from the overlying dura mater 
enter the brainstem, cross over, and ascend on the con-
tralateral side of the brain, leading to the perception of 
pain on the contralateral side of the head where the CSD 
occurred. Thus, a direct spread of CSD-evoked electro-
physiological changes (a brief excitatory phase succeeded 
by several minutes of inhibition) from the cortex to ipsi-
lateral thalamus is challenging to reconcile with the con-
tralateral headache and the temporal gap of 10–60  min 
between aura and headache onset, as well as the tran-
sient nature of these electrophysiological changes. CSD 
occurring in the visual (V1) or insular cortex has been 
shown to elicit an early inhibition followed by a delayed 
facilitation of dura-evoked responses of Sp5C (nucleus 
caudalis) 2nd order neurons in the rat [25]. This indi-
cates that corticotrigeminal projections have the capac-
ity to modulate dural nociception. However, the clinical 
results with relatively BBB-impermeable anti-CGRP anti-
bodies and triptans reinforce the idea that the sustained 
nociceptive activity in migraine is primarily driven by 
dural neurogenic inflammation [1, 6, 8], which can be 
modulated by various central mechanisms. These clini-
cal findings also contradict extrapolations suggesting that 
central facilitatory mechanisms can convert spontane-
ous non-noxious activity in these areas to the headache 
of migraine without aura. Conversely, the proposition 
that “CSD can induce migraine headaches via parenchy-
mal inflammatory signaling, subsequently culminating in 

Conclusion We propose that neuronal stress induced by CSD or synaptic activity-energy mismatch may initiate a 
parenchymal inflammatory signaling cascade, transmitted to the meninges, thereby triggering lasting headaches 
characteristic of migraine, with or without aura. This neuroinflammatory interplay between parenchymal and 
meningeal cells points to the potential for novel targets for migraine treatment and prophylaxis.
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sterile meningeal inflammation” is garnering increasing 
experimental and clinical support [12–20, 26–32] (Table 
1). CSD appears to hold promise not only in unraveling 
the mechanisms behind aura and headache but also in 
studying the parenchymal neuroinflammatory response 
to transient brain perturbations that do not result in 
overt pathology. This form of “neuroinflammation” pres-
ents a challenge because much of the existing literature 
on brain inflammation is centered around disorders char-
acterized by obvious inflammatory reactions, such as 
those seen in multiple sclerosis (MS) or around amyloid 
plaques and tumors. In this review, our emphasis will be 
on delineating the unique characteristics of parenchymal 
neuroinflammatory signaling induced by CSD, which 
serves as a model for benign yet impactful brain pertur-
bation capable of precipitating headaches. This focus is a 
relative departure from our previous review 3 years ago 
[24], which highlighted meningeal neurogenic inflam-
mation to a comparable extent. Additionally, we aim to 
present recent updates and underscore advancements 
in the signaling cascade since its discovery 11 years ago. 
Critically, we will discuss its potential relevance in under-
standing migraine headaches.

CSD and headache
CSD is accompanied by the spread of algesic mediators 
like H+, K+, ATP, and nitric oxide (NO) from the inter-
stitium into the perivascular and subarachnoid spaces [4, 
6, 33]. Although precise molecular mechanisms remain 
incompletely understood, CSD has been shown to acti-
vate perivascular pial nociceptors, as evidenced by the fir-
ing of a group of neurons in the trigeminal ganglion and 
nucleus caudalis concurrently with CSD in the rat, poten-
tially explaining auras coinciding with headaches [34–39, 
56]. However, headaches typically start 15–20 min after 
most migraine auras and, consistent with this clinical 
observation, the majority of nociceptive units begin firing 
15 min after a CSD wave in the rat. The delayed firing of 
dural nociceptors corresponds with a gradual increase in 
meningeal artery blood flow, driven by a trigeminopara-
sympathetic reflex that can be non-invasively recorded 
through the intact skull, following CSD in rats and mice 
[10, 33, 40]. Since tissue homeostasis is quickly restored 
after CSD, this delay has been attributed to the time 
required for sensitization of trigeminocervical nocicep-
tors [37, 57, 58] and the induction and synthesis of pro-
inflammatory enzymes such as cyclooxygenase (COX) 2 
and inducible nitric oxide synthase (iNOS) [10] as well as 
a delayed activation of dural macrophages and dendritic 
cells, occurring subsequent to the early activation of pial 
macrophages [39]. Supporting a role for astrocyte endfeet 
(e.g., for synthesis and release of pro-inflammatory medi-
ators), inactivation of astrocytes abutting pia by fluoro-
acetate or L-a-aminoadipate has been shown to prevent 

Table 1 CSD induces a parenchymal inflammatory signaling 
cascade and trigeminal nociception in vivo
Mechanism Reference*
Trigeminal ganglion and 
nucleus caudalis activation

Bolay et al. 2002 [33], Zhang et al. 2010 
[34], Zhang et al. 2011 [35], Zhao et al. 
2015 [36], Zhao et al. 2016 [37], Zhao 
et al. 2018 [38], Schain et al. 2018 [39], 
Schain et al. 2020 [31], Chen et al. 
2023 [30]

Increased middle meningeal 
artery blood flow (trigeminovas-
cular reflex)

Bolay et al. 2002 [33], Karatas et al. 
2013 [10], Schain et al. 2019 [40], 
Schain et al. 2020 [31], Chen et al. 2023 
[30]

Pannexin1 activation in neurons Karatas et al. 2013 [10], Chen et al. 
2017 [16], Bu et al. 2020 [18], Chen et 
al. 2023 [30], Dehghani et al. 2023 
[27]

Inflammasome formation and 
caspase-1 activation in neurons

Karatas et al. 2013 [10], Chen et al. 
2023 [30], Kaya et al. 2023 [41]

HMGB1 release from neurons Karatas et al. 2013 [10], Takizawa et 
al. 2016 [12], Dehghani et al. 2021 
[26], Dehghani et al. 2023 [27], Kaya 
et al. 2023 [41]

NF-ĸB activation in astrocytes Karatas et al. 2013 [10], Dehghani et al. 
2021 [26], Kaya et al. 2023 [41]

Astrocytosis after repeated CSDs 
for 4 weeks

Ghaemi et al. 2018 [14]

Induction of proinflamma-
tory enzymes and mediators in 
cortex/brain in vivo

Caggiano et al. 1996 [42], Miettinen 
et al. 1997 [43], Yrjänheikki et al. 2000 
[44], Jander et al. 2001 [45], Yokota et 
al. 2003 [46], Thompson et al. 2005 
[47], Viggiano et al. 2008 [48], Karatas 
et al. 2013 [10], Ghaemi et al. 2018 
[14], Chen et al. 2017 [16], Eising et al. 
2017 [17], Takizawa et al. 2020 [13], 
Zhao et al. 2021 [29], Volobueva et al. 
2022 [32], Chen et al. 2023 [30]

Inactivation of astrocytes pre-
vents CSD-induced nociceptive 
sensitization

Zhao et al. 2021 [49]

Activation of pial and dural mac-
rophages, dural dendritic cells

Schain et al. 2018 [39], Schain et al. 
2020 [31]

Pro-inflammatory microglia 
activation after multiple (but 
not single) CSDs

Grinberg et al. 2011 [50], Shibata et 
al. 2017 [51], Takizawa et al. 2017 [52], 
Chen et al. 2023 [30]

CSD-induced headache-related 
behavior

Karatas et al. 2013 [10], Harriott et al. 
2021 [53], Dehghani et al. 2023 [27]

Increased [11C]PBR28 uptake in 
the ipsilateral hemisphere of rats 
3 days after multiple CSDs

Cui et al. 2009 [54]

Increased [11C]PBR28 uptake in 
both parenchymal and menin-
geal regions, and bone marrow 
in patients having MA attacks in 
the past 2 weeks

Albrecht 2019 [19], Hadjikhani 2020 
[20], Christensen 2022 (review) [55]

* Studies that exclusively use a single CSD are italicized. Studies employing both 
single and multiple CSDs are marked in bold. Studies utilizing only multiple 
CSDs and human studies are unmarked
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CSD-induced nociceptive sensitization in the rat [49]. 
After the initial brief activity of constitutively expressed 
neuronal nitric oxide synthase (nNOS) and COX1 in cor-
tical interneurons and astrocyte endfeet, the inducible 
isoforms, iNOS and COX2, can provide high throughput 
and longer-lasting NO and prostaglandin output [4].

Behavioral tests and electrophysiological recordings 
from dural afferents have unequivocally demonstrated 
that a single CSD is sufficient to activate trigeminocer-
vical system and trigger headache-like symptoms in 
rodents [34–36, 38, 39, 53, 56, 59] (Table 1). Notably, the 
inflammatory response is intensified following multiple 
CSDs, leading to the emergence of M1-type inflamma-
tory phenotype in microglia after 24  h [50, 51] (unlike 
a single CSD exhibiting no M1 phenotype [41, 52]) and 
perhaps facilitating the detection of headache-related 
behavior in rodents [10, 53, 60]. While multiple CSDs 
may serve as an experimental tool to reveal subtle CSD-
induced changes, it is essential to recognize that typi-
cally, a single CSD precipitates most auras in humans, 
and multiple CSDs exhibiting a more complex expression 
profile could be a more suitable model of the inflamma-
tory reaction observed in patients experiencing frequent 
migraine with aura attacks [13, 14, 50, 51]. Therefore, 
caution is advised when comparing expression results 
because not only transcripts but also the cell type that 
the transcription is altered can vary with the number of 
CSDs elicited. Accordingly, we will prioritize describ-
ing and discussing the neuroinflammatory signaling and 
transcriptional changes after a single CSD in this review.

Studies have shown that a single CSD induces the open-
ing of neuronal pannexin-1 (Panx1) channels, formation 
of the inflammasome complex, activation of caspase-1, 
and subsequent release of interleukin-1 beta (IL-1β) and 
high mobility group box 1 (HMGB1), which initiate pro-
inflammatory NF-ĸB activation in astrocytes [10, 26, 41]. 
The pro-inflammatory transcription (possibly not limited 
to the NF-ĸB pathway though not thoroughly explored), 
leads to the induction of enzymes such as COX2 and 
iNOS or cytokines such as CCL2, which are normally not 
appreciably expressed by astrocytes [10, 13, 16, 30, 43, 44, 
46, 48, 61–63]. The subsequent release of prostaglandins, 
NO, and cytokines from the astrocyte endfeet along the 
glia limitans can participate in activation/sensitization of 
the pial nociceptors (directly and/or via resident inflam-
matory cells), thereby contributing to headache genera-
tion although precise mechanisms yet to be determined 
[4, 6, 49]. Supporting these hypotheses with experimental 
data from rodents, recent positron emission tomography 
(PET) studies conducted on patients with migraine aura, 
following the injection of [11C]PBR28 (a molecule taken 
up by glial cells during inflammation), revealed tracer 
uptake in both parenchymal and meningeal regions 
[19, 20]. Intriguingly, tracer uptake was simultaneously 

registered in the affected occipital (aura) cortex and the 
overlying dura in some patients. This finding supports 
the concept that CSD-induced parenchymal inflamma-
tory signaling can propagate to the meninges, inducing 
meningeal inflammation and consequently, headache in 
patients as suggested by experimental studies [20]. The 
enhanced tracer uptake in the visual cortex overlying 
meninges was also found to extend to the adjacent bone 
marrow [20, 55]. As elucidated recently, skull channels 
provide direct communication between the meninges and 
the skull bone marrow [64]. In case of overt inflamma-
tion such as bacterial meningitis, bone marrow presents 
myeloid cells that migrate through these channels and 
initiate local inflammatory response [65]. The involve-
ment of bone marrow in various neurological disorders 
such as MS or Alzheimer’s disease is increasingly being 
recognized in both experimental models and patients 
[66, 67]. The surprising finding of tracer uptake extending 
to the bone marrow in migraine with aura patients sug-
gests that myeloid cells may contribute to inflammation 
and reinforces the significance of sustaining dural inflam-
mation for headache generation in migraine.

Neuronal stress sensors – Pannexin1 channels
Pannexins are heptameric transmembrane proteins that 
host a large-pore ion channel [68] (Fig.  1). Within the 
nervous system, both Panx1 and Panx2 are identified. 
Panx1 exhibits broad expression across excitatory and 
inhibitory neurons, as well as oligodendrocytes, astro-
cytes, and microglia [69]. In neurons, its primary local-
ization is at the postsynaptic membrane [70]. Panx1 
serves as a modulator of glutamatergic transmission and 
acts as a sensor for stressful pro-inflammatory conditions 
in the brain by triggering inflammasome formation and 
downstream inflammatory signaling [71–73].

Panx1 channels can be activated by various signals 
present during CSD such as high extracellular K+, glu-
tamate, and intracellular Ca2+ concentration [74], depo-
larization and N-methyl-D-aspartate (NMDA) receptor 
stimulation [75], and plasma membrane stretch (e.g. 
spine swelling). They may also be permanently opened by 
cleavage of the C-terminal region during apoptosis, con-
tributing to cell death under pathological conditions [76]. 
When Panx1 opens in a large-conductance state, its non-
selective ion channel becomes permeable to molecules 
up to 900 Da, allowing considerable K+ and ATP efflux 
[73, 77]. This unique property enables the detection of 
Panx1 opening using membrane-impermeant fluores-
cent dyes smaller than 900 Da, like propidium iodide or 
YoPro-1. Thus, membrane-impermeable dyes can enter a 
cell through large channel openings [78, 79]. This feature 
has been crucial in revealing CSD-induced Panx1 activ-
ity in the mouse and rat brain [10, 18]. Because CSD-
induced perturbations last approximately 2  min, Panx1 
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opening is transient as shown by propidium iodide influx 
to neurons [10]. Nevertheless, this timeframe proves ade-
quate for promptly initiating inflammasome formation 
(Fig. 1B) and activating caspase-1 in neurons, as detected 
5 [10] and 15 [30] minutes after a single CSD induced by 
pinprick or optogenetically by two independent laborato-
ries. This observation holds true for both male and female 
mice, which is crucial to emphasize because migraine 
prevalence is significantly higher in females, and females 
experience autoimmune and autoinflammatory diseases 
more frequently [80, 81]. However, most experimental 
research on migraine has historically focused on male 
animals, though this trend is changing. Notably, NLRP3 
has recently been identified as the NLRP subtype respon-
sible for forming the inflammasome in neurons. Its inhib-
itor MCC950 effectively suppressed caspase-1 cleavage 
induced by CSD [30].

Membrane-impermeant fluorescent dyes can also enter 
through P2x7 receptor (P2rx7) channel pore, which can 
open in a large conductance state, possibly induced by 
extracellular ATP reaching high levels during CSD [84]. 
Notably, the P2x7/Panx1 pore inhibitor A438079 [16] as 
well as disruption of the interaction of P2x7 receptor with 
Src family kinases by TAT-P2x7 [85] have been shown to 
reduce the increase in IL-1β expression after CSD. How-
ever, the location of P2rx7 channels initiating the inflam-
matory transcription, whether on neurons or glial cells, 
remains currently unknown as astrocytes and microglia 

also harbor Panx1 and P2rx7 as well as Src-family kinases 
interacting with them [86]. Although increased IL-1β 
expression after CSD (correlated with the number of 
CSDs [16]) has long been recognized [45, 47], this repre-
sents a distinct process (transcriptional expression) com-
pared to the cleavage and activation of the constitutively 
present pro-IL-1β by caspase-1 in neurons following the 
activation of Panx1 channels and inflammasome forma-
tion, as discussed earlier.

Strongly supporting the notion that CSD-induced 
propidium iodide influx to neurons occurs through 
large channel opening of the neuronal Panx1, this was 
prevented not only by the non-selective Panx1 block-
ers carbenoxolone and probenecid but also the selective 
inhibitor 10Panx peptide [10]. Additionally, RNAi-medi-
ated suppression of Panx1 expression proved to be a 
successful strategy in inhibiting this process [10]. In line 
with the involvement of Panx1 channels, Panx1 mRNA in 
the cortex was reportedly upregulated following a single 
CSD [32] as well as after synaptic metabolic stress caus-
ing Panx1 activation [87]. Of note, P2x7/Panx1 channels 
present in glial cells may also facilitate CSD generation 
and propagation, for instance by releasing K+, as sug-
gested by studies using P2x7/Panx1 channel inhibitors in 
addition to their role in inflammatory signaling [16].

The exact mechanism of how neuronal Panx1 chan-
nels open in a large-conductance state after CSD has not 
been thoroughly investigated. In addition to factors such 

Fig. 1 (A) Pannexins are heptameric transmembrane proteins that form large-pore ion channels. Subunits undergo post-translational modifications; for 
instance, Src-family kinases phosphorylate Y308, promoting pore opening, while caspase cleavage at the 378th amino acid leads to permanent channel 
opening and cell death under pathological conditions. During CSD, Panx1 channels in neurons can be activated by high extracellular K+, glutamate, and 
intracellular Ca2+ concentration, depolarization and NMDA receptor stimulation as well as by Src-family kinases. (B) CSD-induced NLRP3 inflammasome 
complex formation is a downstream event triggered by Panx1 channel activation. Inflammasome assembly serves as an initial step in inflammatory 
conditions, facilitating the processing of pro-inflammatory mediators into their active forms. This assembly involves the clustering of node-like receptors 
around a central hub which is facilitated by the recruitment of an adapter molecule containing a caspase recruitment domain (ASC). Pro-caspase-1 bind-
ing to this complex dimerizes and undergoes self-cleavage, releasing active caspase-1. Reproduced from [82] and [83] with permission.
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as high extracellular K+ and neuronal swelling [10, 87], it 
has been proposed that intense stimulation of NR2A type 
NMDA receptor subunits by high extracellular glutamate 
and strong depolarization during CSD activates Src-
family kinases [18]. These kinases, in turn, phosphorylate 
Y308 near the intracellular C-terminal, thereby promot-
ing the opening of Panx1 channels [18]. Indeed, the TAT-
Panx308 peptide, which inhibits Y308 phosphorylation 
by Src-family kinases, has been shown to prevent CSD-
induced HMGB1 release [27]. Similarly, the Src-family 
kinase inhibitor, PP2, or the NR2A–receptor antagonist, 
NVP–AAM077, when perfused into cerebral ventricles 
of rats prior to CSD induction, attenuated CSD-induced 
Panx1 activation in cortices [18].

Interestingly, neuronal Panx1 activation as moni-
tored by propidium influx was not limited to the cortex 

ipsilateral to CSD. It was also observed in the contralat-
eral cortex and subcortical structures such as the den-
tate gyrus [10, 88] (Fig. 2B). Subsequent validation of this 
observation included the demonstration of widespread 
HMGB1 release from neurons and NF-ĸB activation in 
astrocytes in cortical and subcortical areas of both hemi-
spheres [26]. These effects were less intense in the con-
tralateral hemisphere. Importantly, these experimental 
observations conform with PET findings that revealed 
bi-hemispheric cortical as well as subcortical inflamma-
tory tracer uptake in patients suffering from frequent 
migraine with aura attacks [19, 20] (Fig. 2A). The mecha-
nisms underlying the spread of this phenomenon and 
its potential association with bilateral headaches follow-
ing unilateral aura remain unclear. Notably, the signifi-
cant propidium iodide uptake in dentate gyrus granular 

Fig. 2 CSD-induced inflammatory activity propagates through the brain, meninges, and skull. A. PET studies utilizing inflammation markers revealed 
bi-hemispheric cortical as well as subcortical inflammatory tracer uptake in patients suffering from frequent migraine with aura attacks. B. Consistent 
with clinical observations, Panx1 activity, monitored by propidium iodide (PI) influx to neurons (red fluorescence), was not confined to the cortex (Cx) 
ipsilateral to CSD but was also evident in the contralateral cortex and subcortical structures such as the dentate gyrus (DG) in the mouse brain. C. Simul-
taneous tracer uptake ([11C]PBR28) was observed in the affected occipital cortex responsible for generating the aura and the overlying dura, extending 
to the adjacent bone marrow. These findings suggest that myeloid cells may also contribute to inflammation in addition to the inflammatory mediators 
released from astrocyte endfeet and dural cells (D), thus underscoring the significance of sustained dural inflammation in migraine headache generation. 
Lym: lymphocyte, DC: dendritic cell, Mac: macrophage, Mono: monocyte, MC: mast cell. Reproduced from [10, 19, 91] with permission. Illustrations were 
created using BioRender.com and Servier Medical Art (http://www.servier.com).
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neurons, in contrast to neighboring CA sector pyramidal 
neurons, suggests a propagation via axonal volleys from 
the entorhinal cortex rather than gray matter or intersti-
tium continuity. These volleys typically fire at the onset 
of CSD wave before depression of electrical activity [89]. 
The heightened excitatory firing, akin to observations 
during epileptiform discharges, has the potential to acti-
vate Panx1 channels due to the overactivation of NMDA 
receptors and rise in extracellular K+ [75, 90]. In support 
of this notion, when NMDA receptors were inhibited by 
locally applied MK801 to the cortex contralateral to the 
site where CSD was generated, HMGB1 release was sup-
pressed in the contralateral (non-CSD) cortex, without 
any discernible impact on the CSD occurring on the ipsi-
lateral side [26]. Likewise, in familial hemiplegic migraine 
type 1 mice exhibiting enhanced glutamate release due to 
a knock-in S218L missense mutation in α1A subunit of 
presynaptic CaV2 (but not in R192Q knock-in exhibiting 
less severe phenotype [26]), HMGB1 release in the con-
tralateral cortex was increased [27].

While studies involving CSD have been crucial in 
uncovering and exploring parenchymal inflammatory 
signaling initiated by the activation of neuronal Panx1 
channels, a lingering question remains about whether 
the same pathway could be triggered by transient neuro-
nal disturbances other than CSD. This potential mecha-
nism could offer insights into migraine without aura 
arising from brain perturbations, such as sleep depriva-
tion, distinct from migraine without aura caused by fac-
tors directly activating meningeal nociceptors. Indeed, 
experiments creating synaptic stress by inhibiting glyco-
gen use have shown the opening of neuronal Panx1 chan-
nels, caspase-1 activation, and the release of HMGB1 in 
the absence of CSD in mice [87, 92]. This occurrence is 
attributed to the essential role of glycosyl units derived 
from glycogen in astrocyte processes, fueling astrocytic 
uptake of glutamate and K+ during rapidly escalating 
intense neuronal activity. Migraine triggers, including 
sleep deprivation or acute psychological stress, induce 
transcriptional changes in astrocytes [92]. Some of these 
changes promote glycogen synthesis in astrocyte pro-
cesses over its utilization, potentially jeopardizing the 
clearance of glutamate and K+ during high-frequency/
prolonged neuronal activity [92]. Consequently, based on 
experimental evidence, we can hypothesize that migraine 
triggers hold the potential to activate the parenchymal 
inflammatory signaling, leading to headaches without the 
necessity of CSD and, consequently, without the occur-
rence of aura.

Owing to its upstream role in the initiation of inflam-
mation, Panx1 is being considered as a therapeutic target 
for treating inflammatory diseases such as rheumatoid 
arthritis. The aforementioned findings also highlight 
it as a potential target for prophylaxis of migraine with 

aura and, perhaps, migraine without aura. In experimen-
tal settings, it is possible to inhibit Panx1 or purinergic 
receptor activity with non-selective pharmacological 
agents like carbenoxolone, probenecid, mefloquine, fluf-
enamate [93], spironolactone, nitric oxide donors  (by 
S-nitrosylation at Panx1 C346) [79], quinolones and 
brilliant blue FCF or G to name a few among a growing 
number of agents [94] (Fig.  1A). Additionally, selective 
peptides such as 10Panx and specific conventional or mini 
antibodies can be employed [93]. While carbenoxolone, 
probenecid, mefloquine, spironolactone, floxacins are 
clinically registered drugs and brilliant blue G is a com-
mercially used candy additive [79], there are no published 
reports on their potential effect on migraine at the clini-
cally used doses. Notably, flufenamate was used in the 
past as a nonsteroidal anti-inflammatory drug for treat-
ing menstruation-related migraine [95]. However, the 
question of whether these agents can achieve effective 
concentrations in the cortex to inhibit neuronal Panx1 
channels after systemic administration of clinically used 
doses (e.g. carbenoxolone is poorly BBB permeable [96]) 
and whether any unwanted side effects could overshadow 
(e.g. spironolactone is 1000-times more potent in block-
ing mineralocorticoid receptors [97]) their migraine pro-
phylactic action remains unclear (see [93] for review). 
Just like Panx1 inhibitors, there is growing consideration 
for inflammasome and caspase-1 inhibitors as potential 
therapeutic targets for treating inflammatory diseases 
(reviewed in [98, 99]). This exploration may pave the 
way for clinical trials involving promising candidates in 
the treatment of migraines. Of note, the anti-inflamma-
tory agents developed may not only address parenchy-
mal inflammatory signaling but also potentially suppress 
dural neurogenic inflammation. As a result, these agents 
could serve a dual purpose by being utilized not only in 
migraine prophylaxis but also in the treatment of acute 
migraine attacks. However, it’s important to note that 
effective doses for the brain and meninges could vary 
significantly due to factors such as the BBB permeability 
and the differing abundance of targets to be inhibited. 
Higher doses could potentially lead to unwanted effects. 
Additionally, inhibiting widely expressed upstream tar-
gets such as inflammasomes carries the risk of undesired 
immunomodulation, a common concern in drug devel-
opment, for instance, for rheumatic diseases.

Proinflammatory mediators released from neurons
The CSD-induced formation of the NLRP3 inflamma-
some complex represents a downstream event triggered 
by the activation of Panx1 channels in neurons (Fig. 1B). 
Inflammasome formation serves as a common initial step 
in various inflammatory conditions, establishing molecu-
lar machinery for processing of pro-forms of proinflam-
matory mediators into their active forms. The assembly 
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of an inflammasome complex involves the clustering of 
node-like receptors (NLRs) around a hub when detect-
ing pathogen- or cellular damage-associated signals in 
the cytoplasm. This clustering is completed by the join-
ing of an adapter molecule containing a caspase recruit-
ment domain [100, 101]. Pro-caspase-1 binding to this 
complex dimerizes and undergoes self-cleavage, releas-
ing active caspase-1. Subsequently, this active enzyme 
mediates the cleavage of pro-IL-1β and pro-IL-18, gen-
erating active IL-1β and IL-18. Besides the formation of 
the NLRP3 inflammasome complex after CSD and the 
emergence of the cleaved form of caspase-1 mentioned 
above, the released active IL-1β from neurons has been 
identified in CSF [10] and brain rinsing solution [30]. It 
is worth noting that a technical drawback in studying 
IL-1β lies in the fact that the available antibodies typi-
cally recognize both the pro and cleaved forms of IL-1β. 
Overcoming this limitation, the detection of secreted 
active form in CSF provides valuable insights, albeit with 
technical challenges associated with collecting CSF from 
small rodents. The release of IL-18 along with IL-1β is 
likely to occur as generally observed in other cells [102, 
103], although its role in the context of CSD has not been 
explored. In addition to cleavage of existing pro-IL-1β in 
neurons and release of IL-1β, an increase in IL-1β expres-
sion has been detected as early as 10 minutes after a sin-
gle noninvasive (optogenetically triggered) CSD in the 
mouse [13] and after potassium chloride or microinjury-
induced single CSD in the rat [32]. Multiple CSDs cause 
a more robust increase in IL-1β transcription, accompa-
nied by the expression of several other pro-inflammatory 
genes [13, 16]. This transcriptional response was reduced 
in IL-1 receptor-1 knockout mice, suggesting that it was 
initiated by IL-1β released from neurons [13]. Supporting 
a neuronal origin for this inflammatory activity, 10Panx 
and NLRP3 inhibitor MCC950 ameliorated SD-induced 
upregulation of IL-1β transcription [30].

Parenchymal IL-1β production could also play a signifi-
cant role by triggering meningeal nociceptor activation in 
migraine without aura (i.e. without CSD) [87, 92]. Indeed, 
migraine without aura attacks are seen in patients with 
cryopyrin-associated periodic syndromes (CAPS), where 
IL-1β is overproduced due to mutations in the NLRP3 
inflammasome. Further supporting the involvement of 
parenchymal inflammatory signaling in migraine without 
aura, elevated levels of IL-1β, prostaglandin E2, tumor 
necrosis factor-α (TNF-α), IL-6, and nitrite were detected 
in the internal jugular vein (which primarily drains the 
brain parenchyma but not the meninges) within the first 
hour of a migraine without aura attack [61, 104–106]. 
Interestingly, migraine attacks in CAPS patients are sup-
pressed with the IL-1 receptor antagonist anakinra [107–
109]. Considering the poor BBB penetrance of anakinra, 
its main site of action could be the dura as IL-1β activates 

meningeal nociceptors and increases their mechanosen-
sitivity [110, 111]. However, these observations reinforce 
the idea that agents antagonizing the action of IL-1β 
could be used in migraine prophylaxis and attack treat-
ment if not limited by potential side effects.

Inflammasome activation is also associated with the 
translocation of HMGB1 from the nucleus to the cyto-
plasm [112, 113]. HMGB1, a non-histone protein that 
binds to DNA, is abundantly expressed in nearly all cells 
and serves various nuclear functions [114]. However, 
it transforms into a proinflammatory mediator upon 
release into the extracellular medium, akin to other alar-
min proteins such as IL-33 or S100β [115]. HMGB1 pas-
sively leaks from necrotic or damaged cells but it can also 
be actively transported out of the cell after an inflam-
matory stimulus such as cell swelling, tissue injury, or 
infection [116, 117]. In such cases, its three-dimensional 
structure changes by acetylation, phosphorylation, or 
methylation of different amino acids [117]. This struc-
tural alteration exposes the nuclear export signal neces-
sary for the translocation of HMGB1 from the nucleus to 
the cytoplasm. HMGB1 can activate various inflamma-
tory pathways including NF-κB in nearby cells expressing 
receptors for advanced glycation end products (RAGE) 
and toll-like receptors (TLRs) [117, 118].

Depending on brain region, approximately 40–80% of 
the neuronal nuclei exhibit loss of HMGB1 immunoreac-
tivity immediately after a single CSD, whereas glial nuclei 
remain unaffected [10, 26] (Fig.  3A). Optogenetically-
induced CSD results in comparable HMGB1 release to 
pinprick- or Potassium chloride-induced single CSDs, 
confirming that HMGB1 release is specifically triggered 
by CSD but not experimental injury [26, 27, 30, 41]
(Table 1). A recent study demonstrates that, after a single 
CSD induced optogenetically or by pinprick, HMGB1 is 
released from neurons within extracellular vesicles (EVs), 
predominantly having a size compatible with exosomes 
[41] (Fig. 3B, C). This is in line with the fact that HMGB1 
molecule does not have a leader peptide sequence to 
cross the plasma membrane by conventional protein 
secretion mechanisms [119, 120]. Interestingly, released 
exosomes are promptly taken up by astrocyte processes 
enveloping neuron soma (Fig. 3D), leading to NF-ĸB acti-
vation in these cells, which was previously shown to be 
suppressed by knocking down HMGB1 expression or by 
inhibiting HMGB1 activity with anti-HMGB1 antibodies 
or BoxA fragment of HMGB1 applied before CSD [10]. 
In contrast, microglia do not internalize HMGB1-bearing 
EVs and exhibit neither NF-ĸB activation nor the conven-
tional inflammatory phenotype even 24 h after CSD [41]. 
After multiple CSDs, some of the released HMGB1 leaks 
into CSF, reaching detectable levels with Western blot-
ting [10]. As a result, a slight reduction in HMGB1 levels 
in cortex extracts can be observed 2–3  h after multiple 
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[12, 30], but not single, CSDs giving the impression that 
only multiple CSDs could cause HMGB1 release [12]. 
Consequently, the most reliable parameter to show CSD-
induced HMGB1 release appears to be the loss of nuclear 
HMGB1 immunoreactivity detected by immunohisto-
chemistry [10, 12, 30].

Astrocyte and microglia activation and NF-κB 
pathway
Both astrocytes and microglia express receptors that can 
respond to HMGB1. However, recent findings reveal that 
HMGB1 released in EVs selectively initiates an inflamma-
tory signaling in astrocytes without activating the NF-κB 
system in microglia after a single CSD (Fig. 4). Microglia 

are known to exhibit an inflammatory phenotype only 
after multiple CSDs and with a 24-hour delay, depen-
dent on TLR2/4 [52]. The latter may be more relevant to 
inflammatory activity in patients experiencing frequent 
migraine with aura attacks, rather than the parenchymal 
inflammatory signaling mediated by astrocytes after a 
typical single aura. In addition, the glia limitans formed 
by astrocyte endfeet, covers the whole cortical surface 
and perivascular spaces, providing a large surface area 
for transporting proinflammatory mediators to the pial 
nociceptors as well as to the CSF. This creates an oppor-
tunity for direct access to dural nociceptors in addition 
to their activation via pial collaterals [4]. Even when 
microglia are in an active proinflammatory state, their 

Fig. 3 A single CSD triggered by pinprick causes release of HMGB1 from neurons within small EVs, which are subsequently taken up by astrocyte pro-
cesses. (A) Immunolabeling reveals numerous HMGB1-positive puncta (red, marked by white arrows) in the cytoplasm surrounding the nuclei of cortical 
neurons, identified by CD171 immunolabeling (green). Insets below delineate the boundaries of neuronal cytoplasm and nucleus, emphasizing the distri-
bution of the puncta. Shedding of HMGB1-labeled puncta from cells, with varying degrees of nuclear HMGB1 immunopositivity loss, is observed as early 
as 15 min post-CSD. Puncta near the nuclei (white arrows) suggest HMGB1 release within vesicles. Images are maximum projections of confocal z-stacks. 
Scale bars: 10 μm. (B) Electron microscopic (EM) images of a neuron depict a multivesicular body (light blue) containing several small EVs, one of which 
carries gold nanoparticles marking HMGB1 1-hour post-CSD. (C) Transmission EM image of EV suspension isolated from mouse brain, predominantly 
having a size compatible with exosomes. (D) 3D surface reconstruction of a GFP‐positive astrocyte and its process shows that HMGB1-immunopositive 
puncta (black triangles) are located inside the process. The black rectangle on the left panel indicates the HMGB1‐immunopositive process that is visual-
ized on the right panels from different angles in 3D. P and D denote the proximal and distal ends of the process, respectively. Scale bars: 2 μm. X, Y, and Z 
axes of the volume are shown for orientation. Reproduced from [41] under Creative Commons Attribution 4.0 International License (http://creativecom-
mons.org/licenses/by/4.0/)
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cytokines released into the interstitium seem to reach 
CSF in perivascular and subarachnoid spaces through 
a tight extracellular space [121]. Accordingly, astro-
cytes covering the entire cortical surface and forming an 
elaborate syncytium among themselves are in a prime 
position to facilitate communication of inflammatory 
signaling between the brain parenchyma, pia, and CSF. 
Conversely, microglia continuously survey the spines and 
dendrites with their processes, participating in recycling 
and repairing synapses and, when injured irreparably, in 
removing them [51, 122–124]. In fact, a recent study has 
demonstrated that neuronal swelling-induced by opening 
of Panx1 channels leads to ATP release, which attracts 
microglia processes via P2Y12 receptors exclusively 
expressed in microglia [125]. These observations raise the 
possibility that while astrocytes stimulated by HMGB1 
activate an inflammatory signaling cascade to excite pial 
nociceptors, microglia promote repair programs involv-
ing the expression of cytoprotective cytokines.

While the inflammatory response is inherently complex 
and entails multiple pathways, the translocation of NF-κB 
subunits to the nucleus suggests that transcriptional 
NF-κB activity in astrocytes likely plays a role for orches-
trating this process, from the secretion of pro-inflamma-
tory algesic signals to the CSF, to the anti-inflammatory 

resolution phase. The latter activity may contribute to 
the termination of dural neurogenic inflammation and 
alleviating headache. The NF-κB transcription factor 
family operates by combining p65, cRel, RelB, p52, and 
p50 subunits in pairs. Depending on the specific sub-
unit pairs, NF-κB either promotes the expression of pro-
inflammatory molecules or anti-inflammatory ones. For 
instance, while the p65:p50 pair promotes the expres-
sion of inflammatory genes such as iNOS, COX2, and 
TNF-α, the cRel-containing pairs induce the expression 
of anti-inflammatory/survival genes such as transform-
ing growth factor beta (TGF-β) and Bcl-x [126–128]. The 
relative abundance of transcripts for these pairs deter-
mines the overall behavior of the nucleus [129, 130]. Fur-
thermore, NF-κB pairs can influence the transcription 
of various NF-κB subunits and inhibitory-kappa B (IκB), 
which plays a role in terminating the transcriptional 
activity of NF-κB pairs. Our recent studies have revealed 
that pro-inflammatory NF-κB p65:p50 pairs, as well as 
anti-inflammatory cRel:p65 pairs are both translocated 
to astrocyte nuclei shortly after CSD [131]. Interestingly, 
however, 24 h after CSD, the nuclear p65:p50 pairs disap-
pear while cRel:p65 persist, consistent with a shift from 
pro-inflammatory to anti-inflammatory transcriptional 
activity in astrocytes. One of the steps that terminates 

Fig. 4 A single CSD or synaptic stress induces the opening of neuronal Panx1 channels, formation of the inflammasome complex, activation of cas-
pase-1, and subsequent release of IL-1β and HMGB1, which induce translocation of NF-ĸB pairs to the nucleus to initiate pro-inflammatory transcription 
in astrocytes. The pro-inflammatory transcription in astrocytes leads to the induction of enzymes such as COX2 and iNOS or cytokines such as CCL2. The 
subsequent release of prostaglandins, NO, and cytokines from the astrocyte endfeet along the glia limitans can activate/sensitize the pial nociceptors, 
thereby contributing to sustaining headache. ATP release from Panx1 channels attracts microglia processes that continuously survey the spines via P2Y12 
receptors to repair injured spines. Illustrations were created using Servier Medical Art (http://www.servier.com)
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NF-κB activation is the translocation of IκB to the cell 
nucleus. Consistent with this, we detected IκB in astro-
cyte nuclei along with p65 and cRel shortly after CSD. 
Microglia may also contribute to the resolution of the 
parenchymal inflammatory signaling by switching to an 
anti-inflammatory phenotype, however, this remains to 
be investigated [132].

Clinical outlook and conclusions
Advancements in neuroimaging techniques are promis-
ing to be able to directly assess the presence of the mech-
anisms discussed above in migraine patients. Particularly 
encouraging is the detection of the meningeal uptake of 
the inflammatory tracer [11C]PBR28 over the occipital 
cortex, exhibiting parenchymal uptake in patients suf-
fering from migraine with visual aura [20] (Fig. 2). [11C]
PBR28 PET may also provide insight into the relationship 
between inflammatory signaling and headache in second-
ary headache disorders such as post-seizure headache. 
[11C]PBR28 exploits its high affinity against the 18  kDa 
translocator protein (TSPO) in the outer mitochondrial 
membrane, an inflammation-specific biomarker in acti-
vated glial cells. TSPO-PET imaging is increasingly being 
utilized for various clinical populations to disclose neu-
roinflammatory involvement. For example, in patients 
with chronic neurodegenerative disorders such as amyo-
trophic lateral sclerosis and Alzheimer’s disease, inflam-
matory glial activation in the central nervous system 
(CNS) has been demonstrated starting from the early 
stages [133, 134]. Despite inconsistent results with [11C]
PBR28 [135], another TSPO ligand, [18F]FEPPA, showed 
a notable increase in glial uptake in patients with depres-
sion in relevant regions like the anterior cingulate cortex 
and hippocampus [136]. These discrepancies underscore 
the ongoing need for improved PET ligands, as TSPO 
signals can be confounded by variable binding affinities 
depending on TSPO gene polymorphisms, issues with 
TSPO binding specificity, and their in vivo metabolic 
profiles. Next-generation tracers with enhanced TSPO 
binding features are in active development [137]. If suc-
cessful, these improved tracers can play a pivotal role in 
resolving some of the controversies surrounding the role 
of meningeal neurogenic inflammation and parenchymal 
inflammatory signaling in migraine. Moreover, it is worth 
noting that, inflammatory glial activation in the brain 
and the spinal cord has also been shown with [11C]PBR28 
PET in chronic pain conditions other than migraine, such 
as chronic low back pain [138, 139] and fibromyalgia 
[135], suggesting a shared neuroinflammatory element 
across a heterogeneity of pain-related conditions [140].

In conclusion, neuroinflammatory mechanisms are 
garnering increasing attention in CNS disorders. The 
hypothesis of neuroinflammatory signaling follow-
ing transient perturbations such as CSD or synaptic 

metabolic stress has received considerable experimen-
tal support over the past decade. The demonstration of 
inflammatory tracer uptake in brain parenchyma as well 
as the meninges in migraine with aura patients aligns 
with these experimental findings, reinforcing the notion 
that inflammatory mechanisms may play a pivotal role in 
headache generation after brief perturbations and in sus-
taining the pain. Available evidence suggests that astro-
cyte endfeet covering the brain surface and perivascular 
spaces could serve as an extensive interface for transduc-
ing parenchymal inflammatory signaling to neurogenic 
inflammation in the meninges, where pial nociceptors 
detect the algesic signals and activate the dural nocicep-
tors via collaterals, resulting in release of peptides such 
as CGRP [6]. These peptides stimulate dural inflamma-
tory cells, inducing secretion of algesic and inflammatory 
mediators, thereby contributing to sustaining inflamma-
tion and nociceptive activity, hence, headache [4, 6, 24]. 
Supporting the role of dural neurogenic inflammation in 
headaches, various rodent models have shown that the 
application of inflammatory substances (e.g., complete 
Freund’s adjuvant, inflammatory soup) onto the dura 
causes headache-like behaviors such as peri-orbital allo-
dynia, facial grooming and scratching, along with activa-
tion of trigeminal ganglion and nucleus caudalis neurons, 
as well as trigeminal ganglion satellite cells [34, 35, 141–
145]. Additionally, these models exhibit pain-related gen-
eral behaviors such as freezing and reduced locomotor 
activity [141]. Of note, the primary factors contributing 
to female vulnerability for migraine, estrogen and testos-
terone indeed influence the pain processing networks. 
Testosterone and estradiol exhibit anti-nociceptive and 
nociceptive effects, respectively [146–149]. Interestingly, 
dural nociceptors in female rodents show heightened 
sensitization in response to CGRP [150] and, prolactin 
has been reported to sensitize them for increased CGRP 
release [151, 152]. While this framework is bolstered 
by multiple lines of evidence, there remain outstand-
ing questions that require clarification through future 
research. These include a deeper understanding of the 
involved molecular pathways and cell types, as well as 
the mechanisms that render them noxious, as inflamma-
tory reactions in the brain are not always associated with 
headaches. Central pain-regulating mechanisms, as well 
as a migraine-specific genetic background, may modu-
late these mechanisms in inhibitory as well as facilitatory 
directions.
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