RESEARCH

Acupuncture versus tricyclic antidepressants in the prophylactic treatment of tension-type headaches: an indirect treatment comparison meta-analysis

Qing-Feng Tao¹, Yan-Bing Huang¹, Lu Yuan¹, Yun-Zhou Shi¹, Di Qin¹, Kun Ye¹, Wen-Yan Peng², Chao-Rong Xie¹ and Hui Zheng^{1*}

Abstract

Background Acupuncture showed better improvement than sham acupuncture in reducing attack frequency of tension-type headache (TTH), but its effectiveness relative to first-line drugs for TTH is unknown, which impedes the recommendation of acupuncture for patients who are intolerant to drugs for TTH. We aimed to estimate the relative effectiveness between acupuncture and tricyclic antidepressants (TCAs) through indirect treatment comparison (ITC) meta-analysis.

Methods We searched Ovid Medline, Embase, and Cochrane Library from database inception until April 13, 2023. Randomized controlled trials of TCAs or acupuncture in the prevention of TTH in adults were included. The primary outcome was headache frequency. The secondary outcomes were headache intensity, responder rate, and adverse event rate. Bayesian random-effect models were used to perform ITC meta-analysis, and confidence of evidence was evaluated by using the GRADE approach.

Results A total of 34 trials involving 4426 participants were included. Acupuncture had similar effect with TCAs in decreasing TTH frequency (amitriptyline: mean difference [MD] -1.29, 95% CI -5.28 to 3.02; amitriptylinoxide: MD -0.05, 95% CI -6.86 to 7.06) and reducing TTH intensity (amitriptyline: MD 2.35, 95% CI -1.20 to 5.78; clomipramine: MD 1.83, 95% CI -4.23 to 8.20). Amitriptyline had a higher rate of adverse events than acupuncture (OR 4.73, 95% CI 1.42 to 14.23).

Conclusion Acupuncture had similar effect as TCAs in reducing headache frequency of TTH, and acupuncture had a lower adverse events rate than amitriptyline, as shown by very low certainty of evidence.

Highlights

• Acupuncture showed better improvement than sham acupuncture in reducing headache frequency of tension-type headache (TTH), but the lack of comparisons between acupuncture and first-line drugs impedes recommendation of acupuncture for TTH.

*Correspondence: Hui Zheng zhenghui@cdutcm.edu.cn

Full list of author information is available at the end of the article

© The Author(s) 2024. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicate of the original autory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

- Our indirect treatment comparison meta-analysis found similar effect between acupuncture and tricyclic antidepressants (TCAs) in reducing TTH frequency with very low certainty of evidence.
- Similar effect between acupuncture and TCAs were also observed in reducing headache intensity with very low certainty of evidence.
- Acupuncture had a lower rate of adverse events than amitriptyline with very low certainty of evidence.

Keywords Acupuncture, Tricyclic antidepressants, Tension-type headache, Indirect treatment comparison, Metaanalysis

Background

Tension-type headache (TTH), a common neurological disease, is characterized by recurrent bilateral, tightening or pressing, and mild-to-moderate headache [1, 2]. TTH represents a crucial health issue that affects approximately 26.8% of individuals worldwide and has a female preponderance with a gender incidence ratio of 1.2:1 [3]. The condition contributes to the burden of the economy and lowers the quality of life for the people who suffer from it [3]. Acute medication and lifestyle modifications are the major methods for controlling infrequent TTH (lasting from 30 min to seven days, which occur less than once per month), however frequent episodic TTH (occur on 1–14 days per month) or chronic TTH (on 15 or more days per month) may necessitate prophylactic medications and/or behavioral therapies [1, 2].

Tricyclic antidepressants (TCAs) are recommended for patients who suffer from TTH as the primary prophylactic therapy [1, 4]. Evidence from randomized controlled trials (RCTs) and systematic reviews showed that TCAs, such as amitriptyline and clomipramine, are effective in reducing the headache frequency and intensity of TTH [5–7]. Additionally, the guideline of the European Federation of Neurological Societies suggested that due to the limitation of high side effects of pharmacological prophylactic medications, non-pharmacotherapies also deserve to be considered [4].

Acupuncture is a treatment with a long history [8]. The measure has a regulatory effect on the body by stimulating the acupoints with specific tools (such as needle) [8, 9]. Acupuncture has been applied to manage TTH, and RCTs and systematic reviews suggested acupuncture can reduce the frequency and intensity of TTH [10–13]. However, the most of previous studies of acupuncture were compared with sham acupuncture, and there is a lack of studies to compare with positive drugs in preventing TTH. The rare evidence compared with efficacious drugs might limit the use of acupuncture in the treatment of TTH, as well as hamper doctors from developing more appropriate therapeutic plans.

Indirect treatment comparison (ITC) is a method that can be used to evaluate the relative efficacy of different interventions when there is no direct comparison [14]. This approach can provide evidence of the difference in efficacy between different interventions and can help physicians to select a better therapy. In this study, we performed an ITC analysis of RCTs providing evidence for the comparison of TCAs vs. acupuncture in patients with TTH.

Methods

We designed, performed, and reported the study according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses for Network Meta-Analyses (PRISMA-NMA) guidelines [15].

Literature search

The following databases were searched from inception to April 13, 2023: Ovid Medline, Embase, and Cochrane Library, without any restriction in the language of publication (QF-T). The search was performed using keywords and Medical Subject Heading terms associated with TTH and acupuncture or TCAs (including amitriptyline, amitriptylinoxide, clomipramine, doxepin, imipramine, amoxapine, desipramine, dibenzepine, dosulepin, lofepramine, tianeptine, trimipramine), and the search strategies were provided in eTable 1–3. We also searched clinicaltrials.gov for any potentially missing RCTs. Additionally, the reference lists of previous systematic reviews were screened for eligible studies.

Study selection

The duplicate studies were eliminated firstly. Then, the title and abstract of the searched studies were reviewed by two independent reviewers (Q-FT and YB-H) for potential eligible research. Next, to identify the eligible RCTs further, they read the full text. The disagreements were addressed through discussion and judged by a third reviewer (HZ) finally.

Inclusion and exclusion criteria

The RCT was considered eligible when all of the following conditions were met: (1) The study included adult patients with TTH; (2) The diagnostic standard of the study met the criteria conducted by the International Headache Society or the Ad Hoc Committee on Classification of Headache criteria of TTH; (3) The intervention of the study included acupuncture and/or TCAs; (4) The study measured and reported at least one of the following outcomes: headache frequency (the number of headache days of per month), headache intensity, responder (reduction \geq 50% in the number of headache days of per month) rate, and adverse event rate; (6) The study was a parallel-design RCT or a crossover-design RCT with data of the first phase. The study was excluded when the research included participants with migraine unless results were presented separately for participants with TTH.

Outcome assessments

The primary outcome was headache frequency (the changes of the number of headache days of per month). The secondary outcomes were headache intensity (the changes of the score that was measured on visual analogue scale or numeric rating scale for pain), responder rate, and adverse event rate. We evaluated the outcomes at the end of treatment.

Data extraction

Two reviewers (YB-H and LY) independently extracted the relevant data by standardized extraction forms, involving characteristics of the eligible RCTs, details of intervention and control arm, and data of outcomes. Inconsistencies were resolved by discussion and ultimately by the decision of a third reviewer (HZ).

Risk of bias assessment

Two reviewers (YZ-S and DQ) independently assessed the risk of bias of included RCTs by the Cochrane risk-ofbias tool (version 2) [16]. Several questions involving the following five parts were required to estimate the ROB: randomization process, deviations from intended interventions, missing outcome data, measurement of the outcome, and selection of the reported result. The risk of bias of the eligible study was rated as low, some concerns, or high risk of bias.

The certainty of the evidence

We assessed the certainty of evidence by the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) minimally contextualized framework approach that was a method designed for network metaanalysis [17]. The certainty of evidence was assessed in two levels: high (moderate to high certainty) and low (very low to low certainty) certainty. The classification of intervention was assessed into category 0, category 1, and category 2, representing among the least effective, moderately effective, and among the most effective, respectively.

Statistical analysis

We performed the arm-based network meta-analysis (NMA) by using *multinma* package version 0.5.1 in R 4.3.1 environment and estimated the model in a Bayesian

framework using Stan [18, 19]. We set N (0,100²) prior distributions for the treatment effects and study-specific intercepts and utilized half-N (5²) prior for the heterogeneity standard deviation of the random-effect (RE) model. The posterior total residual deviance, the number of unconstrained data points, and the deviance information criteria (DIC) of both the RE and fixed-effect (FE) models were calculated to estimate the model fit. A closer posterior total residual deviance to the number of unconstrained data points and a smaller DIC indicates a better model fit. A difference of more than 5 points suggests a significant difference [20]. We assessed the global inconsistency by drawing the dev-dev plots of the consistency model and inconsistency model, there is no evidence of inconsistency if all the points are approximately on the line of equality. Based on pooled data from included RCTs, pair-wise comparison analyses were used to assess the mean difference (MD) of continuous outcomes and the odds ratio (OR) of binary outcomes with 95% confidence intervals (CIs). For each outcome, we conducted category-level and individual-level analyses of TCAs. The heterogeneity among studies was evaluated by tau-squared, and a value of tau-squared greater than 0.36 suggested significant heterogeneity [21]. Further, the surface under the cumulative rank curve (SUCRA) value also was calculated to estimate the ranking of each intervention in the network, with a higher SUCRA value indicating a higher ranking of the intervention [22, 23].

We conducted the following sensitivity analyses for primary outcome to estimate the robustness of results: (1) excluding RCTs at high risk of bias; (2) excluding RCTs with a randomized sample size of less than 50 participants. Further, we also performed subgroup analyses in the difference of type of TTH, classification of acupuncture, and endpoint of treatment to explore the source of heterogeneity.

Results

Characteristics of the included RCTs

Figure 1 shows the PRISMA flowchart of literature search and study selection. Our study identified 620 articles, and after removing the duplicate articles, 351 articles were screened the titles and abstracts. Subsequently, 66 articles were reviewed in full text. Finally, 34 articles [5, 6, 10, 11, 24–53] with 4426 participants were included in our research.

Table 1 presents the characteristics of the eligible RCTs. These eligible RCTs were performed in 18 countries. The average age of included participants was 41.1 years old, and 70% of participants were female. Eighteen RCTs included acupuncture, and sixteen RCTs included TCAs, of which twelve RCTs included amitriptyline, one RCT included both amitriptyline and doxepin, one RCT included amitriptyline and amitriptylinoxide, one RCT

Fig. 1 PRISMA flow diagram of literature search and study selection PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-analyses

included imipramine, and one RCT included clomipramine. The results of risk of bias assessment in eligible RCTs are presented in eFigure 1. Eight (23.53%) RCTs were evaluated as low risk of bias, eighteen (52.94%) RCTs were evaluated as some concerns, and eight (23.53%) were evaluated as high risk of bias.

For all the outcomes, we compared the total posterior residual deviance with the number of unconstrained data points and DIC for all RE and FE NMA models. As the results are shown in eTable 4, the RE model had a residual deviance that was closer to the number of unconstrained data points and a lower DIC. Meanwhile, according to the dev-dev plots, all points lie roughly on the line of equality, indicating that there is no evidence for inconsistency (eFigure 2). Therefore, we choose the RE consistency models.

Headache frequency

Nineteen RCTs containing 3046 participants were pooled in the analysis on headache frequency at the end of treatment. Evidence from pair-wise comparison indicated no significant difference between TCAs and acupuncture in reducing the TTH frequency (MD -1.16, 95% CI -4.97 to 2.77; tau-squared 11.30, Fig. 2A, eFigure 3). Very low certainty of evidence showed that acupuncture was no significantly different to amitriptyline and amitriptylinoxide (amitriptyline: MD -1.29, 95% CI -5.28 to 3.02; amitriptylinoxide: MD -0.05, 95% CI -6.86 to 7.06; tau-squared 12.15; Fig. 2B, eFigure 4, Table 2, eTable 5). The SUCRA suggested amitriptyline ranked first with a value of 0.67 (eTable 6).

Headache intensity

Twenty-four RCTs including 2062 individuals were entered in the analysis on headache intensity. Pair-wise comparisons revealed that acupuncture presented no significant difference with TCAs in reducing the headache intensity (MD 2.16, 95% CI -0.91 to 5.15; tau-squared 7.14; Fig. 3A, eFigure 5). At an individual-level, acupuncture presented a similar effect size with amitriptylinoxide, amitriptyline, and clomipramine with very low certainty of evidence (amitriptylinoxide: MD 2.98, 95% CI -2.73 to 8.51; amitriptyline: MD 2.35, 95% CI -1.20 to 5.78; clomipramine: MD 1.83, 95% CI -4.23 to 8.20; tau-squared 8.78; Fig. 3B, eFigure 6, eTable 5, eTable 7). The results of SUCRA showed acupuncture ranked first (SUCRA 0.77, eTable 6).

Responder rate

Eight RCTs involving 2536 participants were included in the analysis of the responder rate. Evidence from pairwise comparison suggested that acupuncture performs a

Table 1 Characteristic	s of the inclue	ded RCTs							
Study	Country	Diagnos- tic criteria	Type of TTH	Interventions	Treatment duration (weeks)	Follow-up duration (weeks)	Number of patients	Fe- male (%)	Mean ages
TCAs									
Bendtsen 1996 [42]	Denmark	IHS	Chronic	Amitriptyline 75 mg vs. placebo	00	0	40	63	40
Bettucci 2006 [47]	Italy	IHS	Chronic	Amitriptyline 20 mg vs. amitriptyline 20 mg plus tizanidine 4 mg	12	0	18	72	35.3
Boline 1995 [52]	NSA	IHS	Episodic	Amitriptyline 30 mg vs. spinal manipulation	9	4	150	61	42
Boz 2003 [6]	Turkey	IHS	Chronic	Amitriptyline 25 mg vs. sertraline 50 mg	12	0	90	88	39.1
Damapong 2015 [43]	Thailand	IHS	Chronic	Amitriptyline 25 mg vs. massage	4	2	60	87	49.8
Deodato 2019 [51]	Italy	IHS	Chronic	Amitriptyline 50 mg vs. osteopathic manipulative therapy	12	0	24	60	47
Holroyd 1991 [41]	USA	IHS	Chronic	Amitriptyline 75 mg vs. cognitive-behavioral therapy	12	0	41	80	32.3
Holroyd 2001 [5]	USA	IHS	Chronic	Amitriptyline 100 mg vs. placebo	00	24	203	76	37
Indaco 1988 [45]	Italy	Ad Hoc criteria	Chronic	Amitriptyline 50 mg vs. placebo	12	0	36	52	61.2
Langemark 1990 [24]	Denmark	IHS	Chronic	Clomipramine 150 mg vs. mianserin 60 mg vs. placebo	9	0	114	ΝA	41
Mitsikostas 1997 [46]	Greece	IHS	Chronic	Amitriptyline 50 mg vs. buspirone 30 mg	12	0	58	62	42.5
Mousavi 2011 [48]	Iran	IHS	Chronic	Imipramine 50 mg vs. TENS	12	0	138	46	28.2
Okasha 1973 [53]	Egypt	Ad Hoc criteria	Psychogenic	Amitriptyline 30 mg vs. doxepin 30 mg vs. diazepam 6 mg vs. placebo	œ	0	80	28	AN
Pfaffenrath 1994 [50]	Germany, Austria, Switzerland	SHI	Mixed	Amitriptyline 75 mg vs. placebo	12	œ	197	56	38
Surbakti 2017 [49]	Indonesia	IHS	Chronic	Amitriptyline 12.5 mg vs. flunarizine 5 mg vs. flunarizine 10 mg	2	0	95	82	44.6
Vernon 2009 [44]	Canada	IHS	Chronic	Amitriptyline 25 mg plus chiropractic vs. Amitriptyline 25 mg plus sharr chiropractic vs. placebo plus sham chiropractic	14	12	20	80	33.9
Acupuncture									
Chassot 2015 [36]	Brazil	IHS	Chronic	Acupuncture, twice/week vs. sham acupuncture, twice/week	5	0	34	100	40.3
Ebneshahidi 2005 [40]	Iran	IHS	Chronic	Acupuncture, 3 times/week vs. sham acupuncture, 3 times/week	4	12	50	80	35.8
Endres 2007 [29]	Germany	IHS	Mixed	Acupuncture, twice/week vs. sham acupuncture, twice/week	9	24	409	78	39.1
Gildir 2019 [<mark>26</mark>]	Turkey	IHS	Chronic	Acupuncture, 3 times/week vs. sham acupuncture, 3 times/week	2	4	160	43	36.4
Guo 2020 [<mark>32</mark>]	China	IHS	Mixed	Acupuncture, once every other day vs. eperisone hydrochloride 150 mg plus flunarizine hydrochloride	4	0	150	62	33.7
Jena 2008 [<mark>30</mark>]	Germany	IHS	Mixed	Acupuncture, 15 times/12w vs. usual care	12	12	1265	NA	NA
Karst 2001 [38]	Germany	IHS	Mixed	Acupuncture, twice/week vs. sham acupuncture, twice/week	5	20	69	55	48.1
Kawk 2007 [39]	Korea	IHS	Chronic	Acupuncture, twice/week vs. sham acupuncture, twice/week	4	12	32	NA	81
Melchart 2005 [11]	Germany	IHS	Mixed	Acupuncture, 1–2 times/week vs. sham acupuncture, 1–2 times/week vs. waiting list	œ	16	270	74	42.7
Schiller 2021 [33]	Germany	IHS	Mixed	Acupuncture, twice/week vs. usual care vs. medical training therapy	9	18	72	74	38.5
Silva 2012 [<mark>28</mark>]	Brazil	IHS	Mixed	Acupuncture, 8–12 times/8week vs. usual care	00	0	43	100	27.3
Söderberg 2006 [31]	Sweden	IHS	Chronic	Acupuncture, once/week vs. physical training vs. relaxation training	10-12	24	90	81	37.4
Wang 2007 [34]	Denmark	IHS	Chronic	Acupuncture, 14 times/week vs. sham acupuncture, 14 times/week	4	6	40	50	45.3

Page 5 of 11

Table 1 (continued)									
Study	Country	Diagnos-	Type of TTH	Interventions	Treatment	Follow-up	Number of	Fe-	Mean
		tic criteria			duration (weeks)	duration (weeks)	patients	male (%)	ages
White 1996 [25]	UK	IHS	Episodic	Acupuncture, once/week vs. sham acupuncture, once/week	9	3	10	70	57.3
White 2000 [<mark>27</mark>]	UK	IHS	Episodic	Acupuncture, once/week vs. sham acupuncture, once/week	5	12	50	, 26	f9
Xu 2015 [<mark>35</mark>]	China	SHI	Mixed	Acupuncture, 3 times/week vs. head acupuncture, 3 times/week	4	0	60	67 1	٨A
Xue 2004 [<mark>37</mark>]	Australia	SHI	Mixed	Acupuncture, twice/week vs. sham acupuncture, twice/week	4	0	40	65	t2.1
Zheng 2022 [1 0]	China	IHS	Chronic	Acupuncture, 2–3 times/week vs. sham acupuncture, 2–3 times/week	ø	24	218	, 62	13.1
SCT, randomized controlle	d trial; TTH, tensi	ion-type head	ache; TCAs, tricyclic	antidepressants; IHS, International Headache Society					

similar effect with TCAs (OR 1.19, 95% CI 0.30 to 4.53; tau-squared 0.32; eFigure 7 A, eFigure 8). At an individual-level, there was no significant statistical difference between acupuncture and amitriptyline and amitriptylinoxide (amitriptyline, OR 0.81, 95% CI 0.16 to 4.20; amitriptylinoxide, OR 1.54, 95% CI 0.31 to 8.33; tau-squared 0.34; eFigure 7B, eFigure 9). The GRADE evidence was very low (eTable 5, eTable 8). Amitriptylinoxide ranked first with a SUCRA value of 0.89 (eTable 6).

Adverse event rate

Nineteen RCTs containing 2052 individuals were pooled in the analysis of adverse events at the end of treatment. The main adverse events due to acupuncture were hematoma and pain; the main adverse events associated with amitriptyline were dry mouth and drowsiness. There was no significant difference between acupuncture and TCAs in adverse events rate (OR 3.37, 95% CI 0.90 to 12.99; tau-squared 0.80; eFigure 10 A, eFigure 11). At an individual-level, very low certainty of evidence suggested that amitriptyline had a significantly higher adverse event rate than acupuncture, but amitriptylinoxide was similar to acupuncture with very low GRADE evidence (amitriptyline: OR 4.73, 95% CI 1.42 to 14.23; amitriptylinoxide: OR 1.15, 95% CI 0.25 to 7.05; tau-squared 0.39; eFigure 10B, eFigure 12, eTable 5, eTable 9). The results of SUCRA suggested acupuncture ranked first (SUCRA 0.37, eTable **6**).

Sensitivity analysis

To evaluate the robustness of the results, we conducted two sensitivity analyses of the primary outcome. When RCTs at high risk of bias were excluded, we found acupuncture showed a similar effect size with TCAs in decreasing the frequency of headache (14 RCTs with 1685 participants; amitriptylinoxide: MD 0.37, 95% CI -6.67 to 7.95; amitriptyline: MD -0.80, 95% CI -6.19 to 4.69; tau-squared 14.26; eFigure 13), indicating the results were stable. After excluding RCTs with a randomized sample size of less than 50 participants, acupuncture also presented a similar effect with TCAs (13 RCTs with 2886 participants; amitriptylinoxide: MD -1.05, 95% CI -6.26 to 3.86; amitriptyline: MD -2.18, 95% CI -5.63 to 1.26; tau-squared 5.56; eFigure 14), suggesting the results were stable.

Subgroup analysis

We performed subgroup analyses of the primary outcome in the subtype of TTH, classification of acupuncture, and different endpoints of treatment to explore the source of heterogeneity. We found these elements did not significantly influence the heterogeneity (eFigure 15–17). Meanwhile, we also found no significant difference between acupuncture and TCAs in reducing

Fig. 2 Estimate of comparison between acupuncture and TCAs of headache frequency TCAs, tricyclic antidepressants; MD, mean difference; Cl, confidence interval. The black vertical line corresponds to 0.

Table 2	Final classifi	cation of	TCAs and	acupuncture,	based	on
NMA of i	ntervention	for heada	ache fregu	iency		

Certainty of the evidence, and classification* of intervention	Intervention	Certainty of the evidence**
Low certainty (low to very low ce	rtainty evidence)	
Category 0: might be not convinc-	Amitriptyline	Very low
ingly different than acupuncture	Amitriptylinoxide	Very low

TCAs, tricyclic antidepressants; NMA, network meta-analysis. *Categories do not inform value judgements about the importance of the effects; **Certainty of evidence for each intervention when compared with acupuncture

the frequency of chronic TTH (14 RCTs with 1130

participants, amitriptylinoxide: MD -0.88, 95% CI -6.94 to 5.24; amitriptyline: MD -2.18, 95% CI -6.47 to 2.11; tau-squared 7.78; eFigure 15). In addition, there was no statistical difference of the effectiveness between acupuncture and TCAs in managing TTH when subgroup analyses were performed with acupuncture classification (eFigure 16) and endpoints of treatment (eFigure 17).

Discussion

Main finding

In our ITC meta-analyses, we found very low evidence demonstrating similar effectiveness of acupuncture

Fig. 3 Estimate of comparison between acupuncture and TCAs of headache intensity

TCAs, tricyclic antidepressants; MD, mean difference; CI, confidence interval. The black vertical line corresponds to 0

and TCAs in preventing TTH attacks. There was no significant statistical difference between acupuncture and TCAs in reducing frequency and intensity, and in responder rate. We found amitriptyline had a higher rate of adverse events than acupuncture with an OR of 4.73 (95% CI 1.42 to 14.23).

Our results showed no significant variation between acupuncture and TCAs, which may be attributed to the fact that both interventions are effective in preventing TTH. TCAs are the first-line drugs that have been recommended for preventing TTH [4, 54]. Amitriptyline was the first-choice drug for preventing TTH and has been assessed as evidence of level A [4, 55]. Acupuncture was also effective in managing TTH [10]. As the results of previous systematic review and meta-analysis [12, 56], both TCAs (SMD 1.29) and acupuncture (SMD -1.49) had a high effect size in reducing the number of headache days per month compared to placebo or sham acupuncture [57]. Moreover, TCAs (OR 1.41) and acupuncture (OR 1.29) presented a similar high effect size in decreasing at least 50% of headache frequency per mouth [13, 56]. Therefore, acupuncture was presented as effective as TCAs with no statistically significant difference.

Evidence from studies of TCAs and acupuncture also demonstrated that they could exert analgesic effects through various mechanisms, respectively. Amitriptyline may exert analgesic effects by inhibiting norepinephrine reuptake, antagonizing n-methyl-d-aspartate receptors, blocking muscarinic receptors and ion channels, and modulating noradrenergic and serotonergic downstream pain inhibitory systems [58, 59]. Additionally, amitriptyline can prevent TTH attacks by relieving the central sensitization [60]. The mechanisms of acupuncture analgesia involve signal molecules such as adenosine [61], γ -aminobutyric acid [62], serotonin [63], opioid peptide [64], and endocannabinoid [65]. Furthermore, recent studies have shown that acupuncture can also exert analgesic effects by recruiting β -END-containing ICAM-1 + /CD11b+immune cells [66].

Furthermore, we found amitriptyline presented a higher adverse event rate than acupuncture (OR 4.73), and the value of SUCRA also suggested amitriptyline had the lowest probability of being safe (SUCRA 0.08). Previous studies demonstrated that acupuncture is a safe therapy with few adverse events [13]. Adverse events associated with acupuncture were pain and hematoma near the needle, these symptoms were usually transient and mild. In contrast, compared with placebo, amitriptyline was more likely to contribute to dry mouth and drowsiness [56]. Acupuncture seems to be safer than amitriptyline.

Implication for practice and research

Based on our ITC analyses, acupuncture was as effective as first-line positive drugs in decreasing TTH frequency and intensity, and had lower adverse events rate than amitriptyline. Therefore, acupuncture can be an alternative therapy for managing TTH, especially for patients who are reluctant to take medications and who have severe adverse reactions to them. Meanwhile, it is necessary to conduct head-to-head trials between acupuncture and positive drugs. Our study was an indirect comparison analysis, and we found no head-to-head study had compared the effect of acupuncture and positive drugs. Endres and colleagues attempted to design an RCT in which a proportion of participants were randomly assigned to take amitriptyline [29]. However, due to participants unwilling to receive amitriptyline, the arm was dropped. Hence head-to-head studies still should be conducted for more evidence of the effectiveness of acupuncture.

Limitations of the study

Our study also had some limitations that should be noted when interpreting the findings. First, we only searched three specific databases and clinicaltrials.gov, and we excluded 24 studies due to the unavailability of full-text copies. Therefore, there may be relevant literature that was not included. However, we tried to avoid having eligible articles overlooked by scanning previous studies. Second, we evaluated the relative effectiveness between acupuncture and TCAs by ITC meta-analyses, and head-to-head trials are still needed to obtain direct evidence. Third, eight of thirteenfour included RCTs were assessed at high risk of bias, which might affect the quality and stability of our results. Therefore, we excluded the high risk of bias RCTs to verify the robustness of our results. Fourth, the studies we included were highly heterogeneous, and we attempted to explore the sources of heterogeneity through subgroup analyses of the TTH subtype, acupuncture classification, and endpoint of treatment. However, we found that these factors did not significantly contribute to the heterogeneity.

Conclusions

Our indirect comparison meta-analysis suggested very low evidence that acupuncture was as effective as TCAs in reducing the frequency and intensity of TTH, and acupuncture had a lower rate of adverse events than amitriptyline. Acupuncture can be an alternative option for TTH, and head-to-head studies are warranted for more direct evidence in the future.

Abbreviations

CI	confidence interval
DIC	deviance information criteria
ΞE	fixed-effect
GRADE	Grading of Recommendations Assessment, Development,
	and Evaluation
TC	Indirect treatment comparison
МD	mean difference
AMA	network meta-analysis
OR	odds ratio
PRISMA-NMA	Preferred Reporting Items for Systematic Reviews and Meta- analyses for Network Meta-Analyses

RCT	randomized controlled trial
RE	random-effect
TCA	Tricyclic antidepressant
TTH	Tension-type headache

Supplementary Information

The online version contains supplementary material available at https://doi. org/10.1186/s10194-024-01776-5.

Supplementary Material 1

Supplementary Material 2

Author contributions

Qing-Feng Tao: study selection, analyzed and interpreted the data, drafted the manuscript for intellectual content. Yan-Bing Huang: study selection, data extraction, and critical revision of the manuscript for important intellectual content. Lu Yuan: data extraction, and critical revision of the manuscript for important intellectual content. Yun-Zhou Shi, Di Qin: quality assessment, critical revision of the manuscript for important intellectual content. Hun Y, Wen-Yan Peng, Chao-Rong Xie: critical revision of the manuscript for important intellectual content. Hui Zheng: study design and conceptualization, critical revison of the manuscript for important intellectual content. All authors had full access to all the data in the study and took responsibility for the integrity of the data and the accuracy of the data analysis. All authors have also agreed to submit for publication.

Funding

HZ received a grant from the Sichuan Youth Science and Technology Innovation Research Team (No.2021 JDTD0007). HZ also received a grant from Chengdu University of TCM for evidence based medicine research (No. XKTD2021004). These sponsors did not participate in the design of the study, the analyzed and interpretation the data, and the decision process to submit the manuscript for publication.

Data availability

The data that supports our study are shown in the article and supplementary material, further inquiries can be directed to the corresponding author.

Declarations

Ethical approval and consent to participate

Our study was a systematic review and indirect treatment comparison metaanalysis of published studies and was exempt from review and approval by the research ethics committee. Ethical approval and consent to participate were acquired by each included study.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Author details

¹The Third Hospital/Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue, Wenjiang District, Chengdu 611100, China

²TCM Cancer Treatment Center, Chongqing University Cancer Hospital, Chongqing, China

Received: 29 November 2023 / Accepted: 21 April 2024 Published online: 29 April 2024

References

1. Ashina S, Mitsikostas DD, Lee MJ et al (2021) Tension-type headache. Nat Rev Dis Primers 7:24. https://doi.org/10.1038/s41572-021-00257-2

- (2018) Headache Classification Committee of the International Headache Society (IHS) The International Classification of Headache Disorders, 3rd edition. Cephalalgia 38:1–211. https://doi.org/10.1177/0333102417738202
- GBD 2019 Diseases and Injuries Collaborators (2020) Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the global burden of Disease Study 2019. Lancet 396:1204–1222. https://doi.org/10.1016/S0140-6736(20)30925-9
- Bendtsen L, Evers S, Linde M et al (2010) EFNS guideline on the treatment of tension-type headache - report of an EFNS task force. Eur J Neurol 17:1318–1325. https://doi.org/10.1111/j.1468-1331.2010.03070.x
- Holroyd KA, O'Donnell FJ, Stensland M et al (2001) Management of chronic tension-type headache with tricyclic antidepressant medication, stress management therapy, and their combination: a randomized controlled trial. J Am Med Assoc 285:2208–2215. https://doi.org/10.1001/jama.285.17.2208
- Boz C, Altunayoglu V, Velioglu S, Ozmenoglu M (2003) Sertraline versus Amitriptyline in the prophylactic therapy of non-depressed chronic tensiontype headache patients. J Headache pain 4:72–78. https://doi.org/10.1007/ s10194-003-0034-9
- Jackson JL, Mancuso JM, Nickoloff S et al (2017) Tricyclic and tetracyclic antidepressants for the Prevention of frequent episodic or chronic tension-type headache in adults: a systematic review and Meta-analysis. J Gen Intern Med 32:1351–1358. https://doi.org/10.1007/s11606-017-4121-z
- Kaptchuk TJ (2002) Acupuncture: theory, efficacy, and practice. Ann Intern Med 136:374–383. https://doi. org/10.7326/0003-4819-136-5-200203050-00010
- Meakins A (2017) Acupuncture: what's the point? Br J Sports Med 51:484. https://doi.org/10.1136/bjsports-2016-096248
- Zheng H, Gao T, Zheng Q-H et al (2022) Acupuncture for patients with chronic tension-type headache: a Randomized Controlled Trial. Neurology 99:E1560–E1569. https://doi.org/10.1212/WNL.00000000200670
- 11. Melchart D, Streng A, Hoppe A et al (2005) Acupuncture in patients with tension-type headache: randomised controlled trial. BMJ 331:376–382
- Linde K, Allais G, Brinkhaus B et al (2016) Acupuncture for the prevention of tension-type headache. Cochrane Database Syst Rev 4:CD007587. https://doi. org/10.1002/14651858.CD007587.pub2
- Tao Q-F, Wang X-Y, Feng S-J et al (2023) Efficacy of acupuncture for tensiontype headache prophylaxis: systematic review and meta-analysis with trial sequential analysis. J Neurol 270:3402–3412. https://doi.org/10.1007/ s00415-023-11695-1
- Song F, Altman DG, Glenny A-M, Deeks JJ (2003) Validity of indirect comparison for estimating efficacy of competing interventions: empirical evidence from published meta-analyses. BMJ 326:472. https://doi.org/10.1136/ bmj.326.7387.472
- Hutton B, Salanti G, Caldwell DM et al (2015) The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med 162:777–784. https://doi.org/10.7326/M14-2385
- Sterne JAC, Savović J, Page MJ et al (2019) RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 366:I4898. https://doi.org/10.1136/bmj. I4898
- Brignardello-Petersen R, Florez ID, Izcovich A et al (2020) GRADE approach to drawing conclusions from a network meta-analysis using a minimally contextualised framework. BMJ 371:m3900. https://doi.org/10.1136/bmj.m3900
- Phillippo DM, Dias S, Ades AE et al (2020) Multilevel network meta-regression for population-adjusted treatment comparisons. J R Stat Soc Ser Stat Soc 183:1189–1210. https://doi.org/10.1111/rssa.12579
- Carpenter B, Gelman A, Hoffman MD et al (2017) Stan: a Probabilistic Programming Language. J Stat Softw 76:1. https://doi.org/10.18637/jss.v076.i01
- 20. Dias S, Welton NJ, Sutton AJ et al (2014) NICE DSU Technical Support document 4: inconsistency in networks of evidence based on randomised controlled trials. National Institute for Health and Care Excellence (NICE), London
- da Costa BR, Juni P (2014) Systematic reviews and meta-analyses of randomized trials: principles and pitfalls. Eur Heart J 35:3336–3345. https://doi. org/10.1093/eurhearti/ehu424
- Daly CH, Neupane B, Beyene J et al (2019) Empirical evaluation of SUCRAbased treatment ranks in network meta-analysis: quantifying robustness using Cohen's kappa. BMJ Open 9:e024625. https://doi.org/10.1136/ bmjopen-2018-024625
- Salanti G, Ades AE, Ioannidis JPA (2011) Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial. J Clin Epidemiol 64:163–171. https://doi.org/10.1016/j. jclinepi.2010.03.016

- Langemark M, Loldrup D, Bech P, Olesen J (1990) Clomipramine and mianserin in the treatment of chronic tension headache. A double-blind, controlled study. HEADACHE 30:118–121
- White A, Eddleston C, Hardie R et al (1996) A pilot study of acupuncture for tension headache, using a novel placebo. Acupunct Med 14:11–15. https:// doi.org/10.1136/aim.14.1.11
- Gildir S, Tuzun EH, Eroglu G, Eker L (2019) A randomized trial of trigger point dry needling versus sham needling for chronic tension-type headache. Med (Baltim) 98:e14520. https://doi.org/10.1097/MD.000000000014520
- White AR, Resch K-L, Chan JCK et al (2000) Acupuncture for episodic tensiontype headache: a multicentre randomized controlled trial. Cephalalgia 20:632–637. https://doi.org/10.1046/j.1468-2982.2000.00097.x
- da Silva JBG, Nakamura MU, Cordeiro JA, Kulay L (2012) Acupuncture for tension-type headache in pregnancy: a prospective, randomized, controlled study. Eur J Integr Med 4:E366–E370. https://doi.org/10.1016/j. eujim.2012.04.002
- Endres HG, Bowing G, Diener H-C et al (2007) Acupuncture for tension-type headache: a multicentre, sham-controlled, patient-and observer-blinded, randomised trial. J HEADACHE PAIN 8:306–314
- Jena S, Witt CM, Brinkhaus B et al (2008) Acupuncture in patients with headache. Cephalalgia 28:969–979. https://doi. org/10.1111/j.1468-2982.2008.01640.x
- Söderberg E, Carlsson J, Stener-Victorin E (2006) Chronic tension-type headache treated with acupuncture, physical training and relaxation training. Between-group differences. Cephalalgia 26:1320–1329. https://doi. org/10.1111/j.1468-2982.2006.01209.x
- Guo NN, Shen HQ (2020) Clinical effect of head-nine-needle therapy on tension headache. Zhen Ci Yan Jiu 45:148–151. https://doi.org/10.1370 2/j.1000-0607.1908196
- Schiller J, Karst M, Kellner T et al (2021) Combination of acupuncture and medical training therapy on tension type headache: results of a randomised controlled pilot study. Cephalalgia 41:879–893. https://doi. org/10.1177/0333102421989620
- Wang K, Svensson P, Arendt-Nielsen L (2007) Effect of acupuncture-like electrical stimulation on chronic tension-type headache: a randomized, double-blinded, placebo-controlled trial. Clin J Pain 23:316–322. https://doi. org/10.1097/AJP.0b013e318030c904
- Xu Y, Lu W, Zhang D et al (2015) Eight acupuncture points in treatment of tension-type headache and cerebral blood flow condition. Liaoning J Traditional Chin Med [liao ning Zhong Yi Za Zhi] 42:1509–1511
- Chassot M, Dussan-Sarria J, Sehn F et al (2015) Electroacupuncture analgesia is associated with increased serum brain-derived neurotrophic factor in chronic tension-type headache: a randomized, sham controlled, crossover trial. BMC Complement Altern Med 15:144. https://doi.org/10.1186/ s12906-015-0664-x
- Xue CCL, Dong L, Polus B et al (2004) Electroacupuncture for tension-type headache on distal acupoints only: a Randomized, controlled, crossover trial. Headache 44:333–341. https://doi.org/10.1111/j.1526-4610.2004.04077.x
- Karst M, Reinhard M, Thum P et al (2001) Needle acupuncture in tension-type headache: a randomized, placebo-controlled study. Cephalalgia 21:637–642. https://doi.org/10.1046/j.1468-2982.2001.00198.x
- 39. Kwak BM, Kim MJ, Kim YM et al (2008) Persisting effects of acupuncture method for chronic tension-type headache;a Randomized Controlled Trial. J Korean Acupunct Moxibustion Soc = Taehan Chimgu Hakhoe chi 25:165–177
- Ebneshahidi NS, Heshmatipour M, Moghaddami A, Eghtesadi-Araghi P (2005) The effects of laser acupuncture on chronic tension headache - A randomised controlled trial. Acupunct Med 23:13–18. https://doi.org/10.1136/ aim.23.1.13
- Holroyd KA, Nash JM, Pingel JD et al (1991) A comparison of pharmacological (Amitriptyline HCL) and nonpharmacological (cognitive-behavioral) therapies for chronic tension headaches. J CONSULT CLIN PSYCHOL 59:387–393. https://doi.org/10.1037//0022-006X.59.3.387
- Bendtsen L, Jensen R, Olesen J (1996) A non-selective (amitriptyline), but not a selective (citalopram), serotonin reuptake inhibitor is effective in the prophylactic treatment of chronic tension-type headache. J Neurol Neurosurg Psychiatry 61:285–290
- Damapong P, Kanchanakhan N, Eungpinichpong W et al (2015) A Randomized Controlled Trial on the effectiveness of Court-Type Traditional Thai Massage versus Amitriptyline in patients with chronic tension-type headache. Evid-Based Complement Altern Med 2015(930175). https://doi. org/10.1155/2015/930175

- 44. Vernon H, Jansz G, Goldsmith C, McDermaid C (2009) A randomized, placebo-controlled clinical trial of chiropractic and medical prophylactic treatment of adults with tension-type headache: results from a stopped trial. J Manip Physiol Ther 32:344–351. https://doi.org/10.1016/j.jmpt.2009.04.004
- Indaco A, Carrieri PB (1988) Amitriptyline in the treatment of headache in patients with Parkinson's disease: a double-blind placebo-controlled study. Neurology 38:1720–1722. https://doi.org/10.1212/wnl.38.11.1720
- Mitsikostas DD, Gatzonis S, Thomas A, Ilias A (1997) Buspirone vs Amitriptyline in the treatment of chronic tension-type headache. ACTA NEUROL SCAND 96:247–251. https://doi.org/10.1111/j.1600-0404.1997.tb00277.x
- Bettucci D, Testa L, Calzoni S et al (2006) Combination of tizanidine and Amitriptyline in the prophylaxis of chronic tension-type headache: evaluation of efficacy and impact on quality of life. J HEADACHE PAIN 7:34–36
- Mousavi SA, Mirbod SM, Khorvash F (2011) Comparison between efficacy of imipramine and transcutaneous electrical nerve stimulation in the prophylaxis of chronic tension-type headache: a randomized controlled clinical trial. J Res Med Sci 16:923–927
- Surbakti KP, Sjahrir H, Juwita-Sembiring R, Mutiara E (2017) Effect of flunarizine on serum glutamate levels and its correlation with headache intensity in chronic tension-type headache patients. Open Access Maced J Med Sci 5:757–761. https://doi.org/10.3889/oamjms.2017.172
- Pfaffenrath V, Diener H, Isler H et al (1994) Efficacy and tolerability of amitriptylinoxide in the treatment of chronic tension-type headache: a multi-centre controlled study. Cephalalgia 14:149–155. https://doi. org/10.1046/j.1468-2982.1994.1402149.x
- Deodato M, Guolo F, Monticco A et al (2019) Osteopathic Manipulative Therapy in patients with chronic tension-type headache: a pilot study. J Am Osteopath Assoc. https://doi.org/10.7556/jaoa.2019.093
- Boline PD, Kassak K, Bronfort G et al (1995) Spinal manipulation vs. Amitriptyline for the treatment of chronic tension-type headaches: a randomized clinical trial. J Manipulative Physiol Ther 18:148–154
- Okasha A, Ghaleb HA, Sadek A (1973) A double blind trial for the clinical management of psychogenic headache. Br J Psychiatry 122:181–183. https:// doi.org/10.1192/bjp.122.2.181
- 54. Robbins MS (2021) Diagnosis and management of Headache: a review. JAMA 325:1874–1885. https://doi.org/10.1001/jama.2021.1640
- Smitherman TA, Walters AB, Maizels M, Penzien DB (2010) The Use of antidepressants for Headache Prophylaxis. CNS Neurosci Ther 17:462–469. https:// doi.org/10.1111/j.1755-5949.2010.00170.x
- Jackson JL, Shimeall W, Sessums L et al (2010) Tricyclic antidepressants and headaches: systematic review and meta-analysis. BMJ 341:c5222. https://doi. org/10.1136/bmj.c5222
- Serdar CC, Cihan M, Yücel D, Serdar MA (2021) Sample size, power and effect size revisited: simplified and practical approaches in pre-clinical, clinical and laboratory studies. Biochem Med (Zagreb) 31:010502. https://doi. org/10.11613/BM.2021.010502
- Ashina S, Bendtsen L, Jensen R (2004) Analgesic effect of Amitriptyline in chronic tension-type headache is not directly related to serotonin reuptake inhibition. Pain 108:108–114. https://doi.org/10.1016/j.pain.2003.12.012
- Exposto FG, Bendixen KH, Ernberg M et al (2019) Characterization and predictive mechanisms of experimentally induced tension-type headache. Cephalalgia 39:1207–1218. https://doi.org/10.1177/0333102419840779
- Bendtsen L (2000) Central sensitization in tension-type headache-possible pathophysiological mechanisms. Cephalalgia 20:486–508. https://doi. org/10.1046/j.1468-2982.2000.00070.x
- Dai Q-X, Geng W-J, Zhuang X-X et al (2017) Electroacupuncture-induced neuroprotection against focal cerebral ischemia in the rat is mediated by adenosine A1 receptors. Neural Regen Res 12:228–234. https://doi. org/10.4103/1673-5374.200806
- Mawla I, Ichesco E, Zöllner HJ et al (2021) Greater Somatosensory Afference with acupuncture increases primary somatosensory connectivity and alleviates Fibromyalgia Pain via Insular γ-Aminobutyric acid: a Randomized Neuroimaging Trial. Arthritis Rheumatol 73:1318–1328. https://doi.org/10.1002/ art.41620
- Zhang Y, Zhang RX, Zhang M et al (2012) Electroacupuncture inhibition of hyperalgesia in an inflammatory pain rat model: involvement of distinct spinal serotonin and norepinephrine receptor subtypes. Br J Anaesth 109:245–252. https://doi.org/10.1093/bja/aes136
- 64. Chen S, Wang S, Rong P et al (2014) Acupuncture for visceral pain: neural substrates and potential mechanisms. Evid Based Complement Alternat Med 2014:609594. https://doi.org/10.1155/2014/609594

- Zhang H, He S, Hu Y, Zheng H (2016) Antagonism of cannabinoid receptor 1 attenuates the anti-inflammatory effects of electroacupuncture in a rodent model of migraine. Acupunct Med 34:463–470. https://doi.org/10.1136/ acupmed-2016-011113
- 66. Shi J-T, Cao W-Y, Zhang X-N et al (2023) Local analgesia of electroacupuncture is mediated by the recruitment of neutrophils and released β -endorphins. Pain 164:1965–1975. https://doi.org/10.1097/j.pain.00000000002892

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.