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Abstract 

Glymphatic system is an emerging pathway of removing metabolic waste products and toxic solutes from the brain 
tissue. It is made of a network of perivascular spaces, filled in cerebrospinal and interstitial fluid, encompassing pen-
etrating and pial vessels and communicating with the subarachnoid space. It is separated from vessels by the blood 
brain barrier and from brain tissue by the endfeet of the astrocytes rich in aquaporin 4, a membrane protein which 
controls the water flow along the perivascular space. Animal models and magnetic resonance (MR) studies allowed 
to characterize the glymphatic system function and determine how its impairment could lead to numerous neuro-
logical disorders (e.g. Alzheimer’s disease, stroke, sleep disturbances, migraine, idiopathic normal pressure hydroceph-
alus). This review aims to summarize the role of the glymphatic system in the pathophysiology of migraine in order 
to provide new ways of approaching to this disease and to its therapy.

Keywords Glymphatic system, Perivascular space, Cerebrospinal fluid, Neurological disorders, Migraine, Headache, 
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Introduction
Migraine is a neurovascular disorder involving the 
trigeminovascular system [1]. It is one of the most fre-
quent and disabling neurological diseases. It affects 
approximately 14% of the general population, mainly 
women, with a mean age of 15–40 years [2]. It represents 

a worldwide social and health concern [3]. Although the 
efforts in understanding migraine pathophysiology, the 
exact mechanisms underlying this disease still remain 
unclear. It has been hypothesized that the glymphatic 
system (GS) may play a role in migraine pathophysiol-
ogy and that its disfunction may impact on the clinical 
spectrum of migraine. In this paper we reviewed cur-
rent literature to summarize the available data concern-
ing migraine, the GS and its involvement in migraine 
pathogenesis in order to provide a new insight into future 
diagnostic and therapeutic perspectives in the field of 
headache disorders.

Migraine disease
Migraine is a complex neurovascular disorder involv-
ing the trigeminovascular system [1]. The current best 
estimate of global migraine prevalence is 14–15%, 
and, in terms of burden, migraine accounts for 4.9% of 
global ill health, quantified as years lived with disability 
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[4]. Migraine causes negative consequences not only 
in patients immediately affected but also on their fami-
lies, colleagues, employers, and society [5]. According 
to the International Classification of Headache disor-
ders (ICHD)  3rd edition, migraine could be divided into 
episodic migraine, with or without aura, and chronic 
migraine [6]. Migraine without aura is defined as a 
strictly unilateral, recurrent and pulsating pain, of mod-
erate to severe intensity, lasting 4–72 h and accompanied 
by symptoms like nausea and/or vomiting, phono- and/
or photophobia, aggravating by the body activity and alle-
viated by rest. Migraine with aura is characterized by the 
recurrence of reversible symptoms, preceding headache, 
which could be visual, sensory, speech/language, brain-
stem, motor or retinal disturbances. Which should show 
at least two of the following characteristics: spreading in 
5 min and/or in succession, lasting 60 min, being unilat-
eral and followed by headache associated with migraine 
symptoms. Chronic migraine is defined as a headache 
occurring on 15  days/month for more than 3  months, 
which has the features of migraine headache on at least 
8 days per month [6].

Neuroinflammation, excess of calcitonin gene-related 
peptide (CGRP) and cortical spreading depression are 
the three most studied mechanisms underlying migraine 
pathogenesis and aura development. A common feature 
of these mechanisms is the impairment of the glymphatic 
system [2, 5, 7–23].

The glymphatic system
The lymphatic system, a vast network of vessels and 
lymphoid organs, assures intrabody fluid homeostasis 
and immunity by collecting and detoxifying fluid and 
metabolic waste products in the interstitial space [24, 
25]. Although the brain tissue is among the most meta-
bolically active organs of the body, there is no classical 
lymphatic circulation clearing its metabolites and waste 
products [26]. Nonetheless, recent studies have dem-
onstrated the existence of the so called glymphatic sys-
tem (GS). It is a complex network of perivascular space 
(PVS) surrounding brain vessels and acting as a possible 
lymphatic circulation. The outer perimeter of the PVS 
is lined with foot-like protrusions of astrocyte cells [27] 
and is separated from the vascular wall by a basement 
membrane called glia limitans [28]. PVS is filled with 
the cerebrospinal fluid (CSF) [1]. CSF is produced by the 
choroid plexi located in the brain ventricles, through Na

+

/K+ ATP-ase and Aquaporin 1 [29]. Despite CSF shares 
many similarities with blood plasma, it has higher lev-
els of sodium, chloride, and magnesium, and lower lev-
els of potassium, calcium, proteins, and cells [30]. After 
its synthesis CSF spreads into the ventricles, the suba-
rachnoid space and the PVSs. It enters the brain tissue 

through para-arterial space and mixes with the intersti-
tial fluid (ISF). CSF-ISF complex and its solutes enter the 
paravenous space thanks to the water transporter Aqua-
porin 4 (AQP4) sited into the astrocytes’ endfeet [31]. 
Once CSF-ISF has reached the subarachnoid space, it 
passes through the arachnoid granulations into the dural 
sinuses, the meningeal lymphatics and into the cervical 
lymphatics [32, 33] (Fig. 1).

The GS is involved in the drainage of metabolic waste 
products such as lactic acid, tau protein, Amyloid-β or 
α-Synuclein. It plays a pivotal role in the exchange of 
nutrients (like glucose and lipids), neurotransmitters, and 
neuroactive substances (such as transretin and apopro-
tein E) [34, 35]. The flow within the GS could be influ-
enced by factors such as changes in the arteriovenous 
hydrostatic gradient, vascular vasodilation or vasocon-
striction, body position, circadian rhythm, respiration, 
heart rate and intracranial pressure [26, 36, 37].

Glymphatic dysfunction in migraine
It has been postulated that the GS could contribute to the 
pathogenesis of migraine. Even though the exact mech-
anism underlying this relationship remains to be fully 
elucidated, three main potential mechanisms have been 
hypotesized: neuroinflammation, calcitonin gene-related 
peptide (CGRP) dysregulation and cortical spreading 
depression (CSD) (Fig. 2).

Regarding neuroinflammation, it is known that GS is 
crucial for removing reactive oxygen species (ROS) [5]. 
Brain tissue is extremely susceptible to ROS damage due 
to its high oxygen consumption, lipidic metabolism and 
poor antioxidants [7]. An excess of ROS in the brain acti-
vates the immune response by the microglia production 
of proinflammatory cytokines such as tumor necrosis 
factor alfa (TNF α), interleukin 1beta (IL-1β) and HIF-1α 
[8, 9]. These molecules are released into the extracellular 
space (ECS) and flow in the glymphatic network. Thus, 
an impairment of the GS results in the accumulation 
of proinflammatory cytokines and ROS leading to the 
degeneration of neurons and to the hypertrophy and acti-
vation of astrocytes [10, 11]. The disruption of the astro-
cytes further aggravates the GS dysfunction and starts 
a vicious circle of events [12]. Neuroinflammation has 
been enquired as a possible mechanism linking the GS 
dysfunction with migraine development. It is known that 
pro-inflammatory cytokines can exacerbate nociceptive 
stimuli overactivating neurons and nociceptors [13–16].

CGRP is a key player in the pathogenesis of migraine. 
It is a neuropeptide produced both in the central and in 
the peripheral nervous system [17]. CGRP exerts a vaso-
dilator action on blood vessels and acts as a neuron excit-
ability modulator [18]. After its release from trigeminal 
terminations of meninges, pia mater and intracerebral 
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arteries, CGRP doesn’t cross the blood–brain barrier but 
could rapidly penetrate the PVS encompassing pial artery 
[19]. Within the CSF-ISF, it reaches the perivenous space 
and hence the bigger dura mater sinus. Then, the final 
step are the lymph nodes of the general lymphatic sys-
tem [2]. It can been postulated that an impairment of the 
GS may increase CGRP concentration and thus worsen 
migraine.

Finally, studies investigated the role of CSD as an addi-
tional hypothetic mechanism explaining how the GS 
dysfunction could lead to the development of migraine 
[2, 19–23]. CSD is a chemo-electrical excitatory wave 
propagating across the brain surface. It is supposed to 
be the major pathophysiological mechanism of migraine 
aura. When a CSD-wavefront arises, the physiological 
ions concentration in the CSF changes: Na

+ and Ca2+ 
enter into the cells, while K+ flows out of neurons. In 
physiological conditions, neurons maintain a potential of 
-70  mV thanks to ions channels and membrane pumps. 
Depolarization of cells membrane occurs when the rela-
tive excess of K+ , adenosine triphosphate and hydro-
gen ions in the ECS makes their potential achieve the 
value of approximately -10  mV [19, 21]. CSD can cause 

a succession of vasoconstriction and vasodilatation of 
the pial and penetrating arteries, thus modifying the PVS 
radium and interfering with the normal function of the 
GS. Moreover, this change in ionic distribution leads to 
a swelling of neurons whose activity remains temporar-
ily suppressed [20, 21, 23]. At the end of the CSD the 
excess of K+ is removed both through the CSF and via K+ 
buffers [20]. Since those evidence is based on studies in 
the experimental animal, further research is needed to 
extend these findings to the human [2, 20, 22].

Techniques for investigating the glymphatic 
system
In animal models, optical imaging techniques, particu-
larly two-photon microscopy, have traditionally held a 
prominent role in the study of the GS. This is primarily 
due to their exceptional spatial resolution, which is cru-
cial for capturing tiny PVS. In in  vivo studies, after the 
intracisternal injection of small fluorescent tracers, in 
anesthetized mice, two-photon microscopy has been 
used to determine the dynamics and the anatomic struc-
ture of the glymphatic flow [31, 37–40]. However, two-
photon microscopy doesn’t allow to visualize the deeper 

Fig. 1 Representation of the glymphatic system and the glymphatic flow. The glymphatic system is made of a network of PVS around arteries 
and veins throwing metabolic waste products away from the central nervous system. PVS is limited by the endfeets of astrocytes and is filled 
with the CSF. CSF is produced in the choroid plexi in the lateral ventricles and then is vehicled into the subarachoid space. From the subarachoid 
space the CSF streams into the PVS around pial arteries. Here CSF enters the brain tissue and mixes with the ISF. CSF-ISF flows into the perivenous 
space and reach the dura mater sinuses, the meningeal lymphatics and the cervical lymphnodes. PVS: perivascular space; CSF: cerebrospinal fluid; 
ISF: interstitial fluid
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regions of brain and for this reason ex vivo studies have 
been employed to analyze the GS distribution and func-
tion in the whole brain or in specific regions [31, 39]. In 
ex  vivo experiments, coronal or sagittal slices of death 
mice brains injected with fluorescent tracers are visu-
alized under a microscope [41, 42]. To quantitatively 
determine the fluorescence distribution in the slices an 
imaging processing is needed: a whole brain slice or a 
region of interest is chosen and the mean pixel intensity 
or the coverage area of the fluorescent tracer is manually 
analyzed in imaging software [31, 41, 43, 44] However, 
this technique is time consuming and, more important, 
the fluorescence of the slices doesn’t always faithfully 
depict the distribution of tracers in the live brains. For 
these reasons, the use of spectrophotofluorometry on 

microplate assays is preferred to better quantify the dis-
tribution of fluorescent tracers in animal brain slices as a 
marker of the GS function [39].

MR imaging has been used in animal models to visu-
alize the distribution and to characterize the function of 
the GS [45, 46]. Iliff et al. used a gadolinium-based con-
trast agent to describe the GS flow into the brains of liv-
ing rats [47].

While direct measurement techniques utilizing fluores-
cence and contrast agent tracers can be used in animal 
studies, their application in humans is invasive and comes 
with inherent challenges. Consequently, there is a press-
ing need to explore alternative noninvasive methods that 
facilitate the study of the glymphatic system in human 
subjects [48, 49]. So far, no ideal technique is available 

Fig. 2 Possible pathogenetic mechanisms of migraine involving the glymphatic system dysfunction. CSD can be responsible for a transient PVS 
closure causing a GS impairment. The GS dysfunction can lead to the accumulation of excitatory, pro-inflammatory and vasodilator molecules 
involved in the development and the exacerbation of migraine. CSD: cortical spreading depression; PVS: perivascular space; ROS: reactive oxygen 
species; CGRP: calcitonin gene-related peptide; ATP: adenosine triphosphate; TNF-α: tumor necrosis factor alpha; IL-1β: interleukin 1-beta; HIF-1α: 
hypoxia-inducible factor 1-alpha
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to study the GS in humans but several techniques have 
been employed as tools to provide different type of infor-
mation on the GS function in humans. Research studies 
employed MR, positron emission tomography and ultra-
sound [50–53].

MR offers distinct advantages, including the ability to 
overcome the limited penetration depth of two-photon 
microscopy and the capacity to perform whole-brain 
imaging, in contrast to two-photon microscopy [38, 50]. 
Several noninvasive MR methodologies offer the oppor-
tunity to investigate the dynamics of ISF and CSF flow 
within the cerebral tissue in human subject: T1 and T2 
weighted sequences, T2 fluid-attenuated inversion recov-
ery (FLAIR); PVS imaging; dynamic contrast-enhanced 
MR imaging (DCE-MRI); diffusion tensor image analysis 
along the PVS (DTI- ALPS), arterial spin labeling, chemi-
cal exchange saturation transfer, and intravoxel incoher-
ent motion [49].

PVS exhibits hyperintensity on T2-weighted imag-
ing, isointensity on proton density weighted imaging 
and hypointensity on T1 and T2 weighted imaging and 
FLAIR. The abnormalities of PVS can be detected as 
ectatic and less regular spaces at MRI. The combina-
tion of T1 and T2 weighted imaging, as well as T1 and 
FLAIR can enhance the sensitivity of PVS identification 
[34, 54–56].

A common tool to analyze the distribution of PVS in 
human brains is a visual rating scale based on the Pot-
ter scoring which grades PVSs from 0 to 4 according to 
their numbers in the brain plane calculated in the basal 
ganglia and in the centrum semiovale on structural brain 
imaging. Potter scoring also grades midbrain PVSs 0–1 
according to their presence or absence [49, 57, 58]. How-
ever, this technique is influenced by the experience of 
observers and by the ceiling effect which affect the inter- 
and intrareproducibility [49]. For these reasons, Dubost 
et  al. developed an automatic system of grading PVS at 
MRI in humans [59].

DCE-MRI measures the movement of contrast agents 
in the ISF within the PVS and brain tissue, eliminating 
the necessity for intricate modeling or postprocessing 
techniques. Additionally, intrathecal DCE-MRI has the 
potential to achieve precise and detailed spatial resolu-
tion. The extensive use of DCE-MRI for investigating ISF 
properties in humans is hampered by several factors. The 
procedure is invasive, requiring sterile conditions and the 
expertise of healthcare professionals, it can be uncom-
fortable for patients and can be biased by limited spatial 
and temporal resolution of tracers and by movement 
artifacts [38, 60]. Furthermore, intrathecal injections of 
gadolinium-based contrast agents may lead to adverse 
reactions, such as anaphylactic responses, including 
headache and severe nausea [61], and carry the risk of 

nephrotoxicity, potentially causing renal failure [62], as 
well as neurotoxic effects, which may manifest as speech 
issues, psychotic symptoms, lethargy, and visual impair-
ment [63]. There is also the concern that gadolinium can 
enter brain tissue through the glymphatic system and 
deposit in parenchymal tissues, including the dentate 
nucleus and globus pallidus [64, 65].

DTI-ALPS is a method that utilizes diffusion MR to 
assess the activity of the glymphatic system by examin-
ing the dynamics of ISF within the human brain. This 
technique entails the analysis of DTI along the PVS, and 
the outcomes are represented as ALPS scores. When the 
ALPS index approaches a value of one, it indicates that 
water diffusion within the PVS has a minimal impact. 
In contrast, a higher ratio suggests an elevated level of 
water diffusivity within the PVS. The method proposed 
for computing the ALPS index using DTI-ALPS is influ-
enced by head rotation, potentially leading to reduced 
reproducibility and reliability. To address this issue, an 
additional approach involving DTI reorientation was 
introduced for ALPS index calculation based on DTI-
ALPS. Taoka et al. also proposed a method involving the 
utilization of diffusion-weighted imaging with a three-
axis diffusion gradient direction for the computation 
of the ALPS index within the framework of diffusion-
weighted imaging-ALPS [66].

Arterial spin labeling, chemical exchange saturation 
transfer and intravoxel incoherent motion are new prom-
ising MRI technique that indirect assess the GS function 
by the analysis of blood–brain barrier permeability, by 
the estimation of solutes at two order of magnitude lower 
concentration than traditional MRI and by the evaluation 
of the diffusion/perfusion effect of blood motion in tiny 
vessels [49].

Ultra-high field MR imaging, acquired at ≥ 7  T, is a 
valuable approach to better detect PVS abnormalities in 
human subjects [67–69]. However, there are some limita-
tions of this technique: ultra-high MRI is more sensitive 
to movement artifacts, there is a magnetic field dishomo-
geneity causing a higher difficulty to identify subcortical 
PVS, there are issues about the radiofrequency absorp-
tion rate and a more limited compatibility of medical 
devices with magnetic coils [34].

Positron emission tomography and ultrasound imaging 
are two further noninvasive imaging techniques which 
could be used to investigate the GS [38, 52, 53].

Further details are shown in Table 1.

Animal models
There are some studies aimed to elucidate the way in 
which the GS could be involved in the pathophysiology 
of migraine in the animal model of this disease [37, 70].
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Huang et  al. used a nitroglycerin (NTG)-induced 
migraine mouse model to clarify whether the GS dys-
function is a trigger or an aggravating factor of migraine 
[70]. The NTG administration in adult mice determined 
a decrease in the mechanical pain threshold and the 
stimulation of meningeal nociceptors by the release of 
nitric oxide, when compared with healthy controls. Using 
immunofluorescence, Huang et  al. demonstrated that 
there is a reduction in the AQP4 expression in the PVS 
in mice with NTG induced migraine, especially in those 
simultaneously treated with an AQP4 inhibitor (TGN-
020). The changes in AQP4 distribution led to a massive 
release of CGRP [70]. Immunofluorescence in NTG-
induced migraine models further revealed that TGN-020 
administration determined an increased expression of 
c-Fos as a marker of increased neuronal activity as well 
as an increase in astrocytes and microglia activation as 
a marker of neuroinflammation in the medullary dorsal 
horn. NTG-induced migraine models simultaneously 
treated with TGN-020 showed a reduction in the distri-
bution of a tracer (TR-d3) when it is injected in the cis-
terna magna. Taken together these results suggest that 
the GS dysfunction is an aggravator factor rather than a 
trigger mechanism of migraine [70].

Schain et  al. used an in  vivo two-photon imaging 
technique to determine whether CSD alters the func-
tion of the GS in mice models [37]. Using dying tracers 
they demonstrated that PVS system is a wide, cleansing 
network encompassing both superficial and penetrat-
ing vessels (arteries and veins) and that it is bordered by 
endothelium, pia mater and brain tissue. PVS diameter 
is influenced by anatomy: it is larger in case of multiple 
vessels and of vessels bifurcations. Orthogonal recon-
struction of superficial vessels was used to quantify the 
tridimensional rate between PVS width, vessel lumen 
and subarachnoid space. This technique was less effi-
cient when used to determine PVS diameter in penetrat-
ing vessels. Inducing CSD by pinprick in the brain cortex 
of non-injected mice, Schain et  al. observed that CSD 
causes an initial constriction of superficial vessels (arter-
ies and veins), followed by a dilatation at 3 min from the 
beginning of the stimulation and by a final constriction 
that lasts for about 22 min. CSD causes the complete clo-
sure of PVS at 6 min after its induction. Thereafter, PVS 
slowly reopens but remains partially closed for about 
30  min. It still remains unknown the exact mechanism 
underlying the closure of PVS during CSD but some stud-
ies hypothesize that it depends on the swelling of neurons 
and astrocytic endfeet during CSD [71, 72]. After the 
injection of tracers, Schain et al. demonstrated that they 
accumulate into the PVS after the arrival of CSD wave-
front and that the glymphatic flow is delayed and slowed 
[37]. This confirms the hypothesis that CSD causes the 

storage of excitatory and neuroinflammatory chemicals 
such as glutamate [73], ATP [74] and potassium [75, 76] 
in the PVS. At the end of CSD, when PVS reopens, all the 
excitatory molecules reach and activate the dura nocicep-
tors and central trigeminovascular neurons [77, 78]. This 
sequence of events sems also to explain the delayed onset 
of pain in patients suffering from migraine with aura [37].

In summary, experimental studies investigating the 
glymphatic system in migraine are so far limited. Avail-
able data indicate that the GS dysfunction acts more 
consistently as an aggravator rather than as a causal fac-
tor of migraine. Furthermore, it has been demonstrated 
that a transient closure of the PVS is involved in the 
development of CSD, the most investigated pathogenetic 
mechanism of migraine aura, by the accumulation of pro-
inflammatory and irritative molecules. These molecules 
than contribute to the activation of the trigeminovascular 
nociceptors determining headache pain.

Human findings
Few studies have investigated the role of the GS dysfunc-
tion in migraine in humans [2, 79–94].

A recent pilot study using the DTI-ALPS index com-
pared healthy controls with people with migraine, both 
with and without aura. It demonstrated that there is not a 
significant difference in the DTI-ALPS index, as a marker 
of the GS dysfunction, in the two examined groups and 
also between individuals with and without aura. These 
findings suggest a weak engagement of the GS impair-
ment in the pathophysiology of migraine, but further 
research is needed to confirm these observations [80].

Another possible marker of the GS dysfunction are 
the enlarged perivascular spaces at MRI. Using a 3  T 
MRI technique, Yuan et  al. investigated the correlation 
between enlarged perivascular spaces, as a marker of 
GS dysfunction, and migraine in three groups: healthy 
controls, episodic migraine and chronic migraine. They 
showed that an increase in the PVS width, especially in 
the centrum semiovale and in the midbrain, is an inde-
pendent predictor factor of migraine. In this same study 
GS dysfunction was not associated with the clinical man-
ifestation and the chronification of migraine [2].

To evaluate whether the GS activity changes dur-
ing chronification of migraine, Zhang et  al. used the 
DTI-ALPS index on a cohort of people with CM. They 
compared the results obtained in the CM group with 
those emerged from healthy controls and from epi-
sodic migraine group. During migraine chronification, 
the DTI-ALPS score is improved rather than dimin-
ished [81]. The raise of the DTI-ALPS index in CM 
seems to be related to the alteration of vascular reactiv-
ity induced by the prolonged release of CGRP during 
each migraine attack. CGRP, in fact, causes a central 



Page 8 of 12Vittorini et al. The Journal of Headache and Pain           (2024) 25:34 

sensitization thought to be the mechanism underly-
ing migraine chronification. Furthermore, Zhang et  al. 
demonstrated that the improvement of the DTI-ALPS 
index lateralized on the right hemisphere in CM [81], 
confirming the results of previous studies investigat-
ing the lateralized manifestation of headaches [82–86]. 
Functional MR imaging studies hypothesized that the 
predominance of the right hemisphere dysfunction in 
headaches disorders could depend on abnormal connec-
tions between the right thalamus and some ipsilateral 
cortical regions involved in the regulation of pain (pri-
mary somatosensory cortex and premotor cortex) [85]. 
MR spectroscopy further confirmed that the right thal-
amus of migraineurs has increased levels of glutamate 
and glutamine [86]. These findings suggest that in CM 
there is an improvement of the GS activity. Zhang et al. 
hypothesized that the GS overactivation during migraine 
chronification could be a concomitant phenomenon of 
the vascular reactivity induced by an accumulation of 
CGRP in the interictal period starting the mechanism of 
central sensitization. However, this study has some limi-
tations: first, the number of participants was too small to 
extend the results to the whole population of individuals 
with CM; second, the DTI-ALPS score, as a marker of 
the GS activity, is commonly calculated on slices of the 
lateral ventricle body and so it represents partial func-
tion of the entire GS; third, data on the CGRP levels in 
the brain of the participants were not collected. For these 
reasons, further researches are needed to validate these 
findings [81]. More recently, Wu et  al. study used MRI 
techniques to establish whether the GS and the menin-
geal lymphatic vessels function are altered in people 
with chronic migraine (both with and without analgesic 
medical overuse) and episodic migraine, compared with 
healthy controls. They demonstrated a negative correla-
tion between the DTI-ALPS index in chronic migraine, 
especially in people with a medical overuse, rather the 
in episodic migraine or in healthy control, which suggest 
a dysfunction of the GS in chronic migraine. Further-
more, they observed a negative correlation also between 
the DTI-ALPS and migraine disability, especially when 
migraine attacks frequence was > 4 per month. Addition-
ally, they observed that a negative correlation exists also 
between the DCE-MRI values of time to peak, mean time 
to enhance, enhancement integral and chronic migraine, 
suggesting an impairment of the meningeal lymphatic 
system in chronic migraine [87].

Some studies have provided evidence that cerebral 
small vessel disease may be associated with a dysfunction 
of the GS [88]. Following these findings, Ornello et  al. 
hypothesized that GS dysfunction may contribute to the 
development of white matter hyperintensities (WMHs) 
in people with migraine [89, 90]. WMHs are a common 

finding at MR in individuals with migraine but their 
nature is still unclear [88, 91]. It is supposed that WMHs 
represent an expression of subtle ischemic suffering of 
brain tissue caused by an impairment of normal perivas-
cular outflow of CSF-ISF which, in turn, leads to an accu-
mulation of waste products into the ECS [92]. It has been 
suggested that CSD, the surrogate of migraine aura could 
determine, through the vasoconstriction of pial and pen-
etrating arteries, a spreading ischemia and the appear-
ance of WMHs at MR [93]. For these reasons, it could 
be postulated that the WMHs in patients suffering from 
migraine represent a consequence of the dysfunction of 
the GS [94]. To evaluate whether WMHs in migraineurs 
are associated with the GS dysfunction, Ornello et  al. 
used the DTI-ALPS index. Using this technique, the 
authors did not find that GS dysfunction was associated 
with WMHs in patients with migraine [94].

To summarize, human studies came with conflictual 
data regarding the involvement of the GS dysfunction 
in migraine pathogenesis, especially in people suffering 
from chronic migraine. Some limitations occurred in the 
studies design making results not generalizable to the 
whole population of individuals with migraine. For these 
reasons, further research is needed to fully elucidate 
the role of the GS in migraine development as well as to 
define new techniques of investigating the GS changes in 
humans suffering from migraine. To move the field for-
ward it would be important to investigate well defined 
populations, harmonizing methods and possibly using 
multicenter study design.

Other headache disorders and the glymphatic 
system
Several studies have reported that there is an association 
between sleep disturbances and impairment of the GS. 
Since sleep disturbances are common in migraine and 
may be present also in other headache disorders it can 
be postulated that there is an interconnection among all 
those conditions. In recent years, it has been pointed out 
the possible bidirectional involvement of sleep abnor-
malities and GS [95–99]. Animal models demonstrate 
that the flow into the GS is facilitated during the sleep, 
especially during the deep sleep [96, 97]. Thus, sleep dis-
turbances can diminish the efficacy of the GS in recy-
cling metabolic waste products, resulting in a greater 
likelihood of developing migraine and dementia [95, 98] 
(Fig.  3). Furthermore, awakening causes a greater pro-
duction of norephinepfrine which reduces the intersti-
tial space and determines an accumulation of molecules 
involved in the pathogenesis of vary neurological diseases 
[99]. GS disfunction can also lead to the accumulation 
of orexin (both A and B) in the brain tissue, especially in 
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the dorsal raphe and in the locus coeruleus causing sleep 
fragmentation and inefficiency [95].

Cluster headache (CH) is considered the most pain-
ful type of headache [35] and according to the ICHD-
3rd edition it is defined as a strictly unilateral orbital, 
supraorbital or temporal pain that lasts for about 
15–80 min and occurs for 1–8 times per day. It is asso-
ciated with autonomic ipsilateral manifestations such as 
tearing, conjunctival injection, eyelid edema, excessive 
sweating, rhinorrhea, miosis, ptosis and agitation [6]. 
Kim et  al. investigated the possible association between 
GS impairment and CH, focusing on the role of sleep dis-
turbances and ageing. Using the DTI-ALPS index they 
demonstrated that patients with CH show a decreased 
activity of the GS and they identified a negative correla-
tion between the DTI-ALPS index reduction in CH and 
age. These findings confirm the existence of a bidirec-
tional link between CH and sleep disturbances in aged 
brains: ageing reduces the total time spent in deep sleep 
causing a decreased removal of waste products from the 
brain, included those involved in the development of 
CH; on the other hand, CH causes sleep fragmentation 
and the accumulation of molecules involved in different 
neurological diseases (e.g. β-amyloid, tau protein, pro-
inflammatory cytokines) [24, 25, 100–103].

The GS inefficiency has been correlated also with 
the development of idiopathic intracranial hyperten-
sion (IIH) [104]. It represents an augmentation of 
the normal intracranial pressure (ICP) that, in nor-
mal conditions, is determined by the balance of three 
compounds: CSF, brain tissue and blood vasculature. 
Considering that the skull is a fixed volume, the rela-
tive excess of one of these three compounds is suffi-
cient to cause an increment in the intracranial pressure, 

determining symptoms like nausea, vomiting, tinnitus, 
headache, and visual impairment. When the glym-
phatic flow is diminished, an accumulation of CSF into 
brain tissue and nerves sheaths (particularly in the 
optic nerve) happens and leads to the typical radiologi-
cal signs of IIH: congestion of the GS and overflow of 
CSF into the lymphatic pathway [104–106]. The third 
radiological sign of IIH, the venous stenosis, both 
intrinsic and extrinsic [107], is typical in symptomatic 
patients with papilledema and increased ICP. Particu-
larly, transverse sinus stenosis determines an impair-
ment of the CSF outflow via the venous system. Thus, 
CSF drainage, as well as ICP, become largely dependent 
on the efficiency of the glymphatic pathway. For these 
reasons, ICP in IIH could be extremely variable and 
this variability could explain why some individuals with 
chronic migraine, also vestibular migraine, and isolated 
tinnitus could show radiological signs of IIH without 
meeting the diagnostic criteria for IIH (Dandy’s crite-
ria), based on the presence of high ICP [108, 109]. Vice 
versa, increased ICP and papilledema could represent 
a severe stage of IIH [104]. These observations suggest 
the need to upgrade Dandy’s criteria for the diagnosis 
of IIH, introducing the radiological signs as diagnostic 
criteria and reducing the importance of increased ICP 
[104].

Traumatic brain injury is frequently associated with 
the development of post-traumatic headache and 
chronic migraine via an impairment of the GS [95]. 
Studies reported that traumatic brain injury causes a 
regional brain damage that leads to a disruption of the 
GS with the consequently accumulation of solutes and 
neurotoxic molecules, as far as excitatory products that 
feedforward the headache [110].

Fig. 3 Relationship between glymphatic system impairment, sleep disturbance and headache. Poor sleep can determine an impairment 
in the glymphatic flow which, in turn, leads to the accumulation of neuroexcitatory and pro-inflammatory chemicals involved in the development 
of headache. Headache itself can, directly or indirectly (via a dysfunction of the glymphatic system) exacerbate sleep disturbances
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Conclusions
The study of the glymphatic system is giving more 
insights on the mechanisms underlying several neurolog-
ical disorders and particularly sleep, neuroinflammatory 
and neurodegenerative diseases. Despite a rationale and 
experimental studies supporting a possible involvement 
of the glymphatic system in migraine and in other head-
ache disorders so far no conclusions in this regard can be 
reached. The human studies investigating the glymphatic 
system in migraine and in other headache disorders are 
limited and mostly lead to negative results. To move the 
filed forwards, further improvements in techniques to 
investigate the glymphatic system in vivo in humans are 
needed as well as proper designed studies that consider 
possible confounders and contributing factors.
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