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Abstract 

Background Despite hypothalamus has long being considered to be involved in the pathophysiology of cluster 
headache, the inconsistencies of previous neuroimaging studies and a limited understanding of the hypothalamic 
areas involved, impede a comprehensive interpretation of its involvement in this condition.

Methods We used an automated algorithm to extract hypothalamic subunit volumes from 105 cluster headache 
patients (57 chronic and 48 episodic) and 59 healthy individuals; after correcting the measures for the respective 
intracranial volumes, we performed the relevant comparisons employing logist regression models.

Only for subunits that emerged as abnormal, we calculated their correlation with the years of illness and the number 
of headache attacks per day, and the effects of lithium treatment. As a post-hoc approach, using the 7 T resting-state 
fMRI dataset from the Human Connectome Project, we investigated whether the observed abnormal subunit, com-
prising the paraventricular nucleus and preoptic area, shows robust functional connectivity with the mesocorticolim-
bic system, which is known to be modulated by oxytocin neurons in the paraventricular nucleus and that is is abnor-
mal in chronic cluster headache patients.

Results Patients with chronic (but not episodic) cluster headache, compared to control participants, present 
an increased volume of the anterior–superior hypothalamic subunit ipsilateral to the pain, which, remarkably, also cor-
relates significantly with the number of daily attacks. The post-hoc approach showed that this hypothalamic area pre-
sents robust functional connectivity with the mesocorticolimbic system under physiological conditions. No evidence 
of the effects of lithium treatment on this abnormal subunit was found.

Conclusions We identified the ipsilateral-to-the-pain antero-superior subunit, where the paraventricular nucleus 
and preoptic area are located, as the key hypothalamic region of the pathophysiology of chronic cluster headache. 
The significant correlation between the volume of this area and the number of daily attacks crucially reinforces this 
interpretation. The well-known roles of the paraventricular nucleus in coordinating autonomic and neuroendocrine 
flow in stress adaptation and modulation of trigeminovascular mechanisms offer important insights into the under-
standing of the pathophysiology of cluster headache.
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Background
Cluster headache (CH) is characterized by a distinctive 
pattern of cyclic recurrence of short-lasting unilateral 
excruciating craniofacial pain accompanied by trigemi-
nal autonomic symptoms ipsilateral to the head pain 
such as rhinorrhea, eyelid edema and miosis/ptosis 
(Arnold, 2018). The exact pathophysiological mecha-
nisms of this neurological disorder and its chronicity, 
which occurs in 10–20% of patients [40], remain to be 
elucidated [45]. However, the cyclic nature of the dis-
ease (circannual recurrence of cluster periods and 
circadian onset of attacks) and the associated neuroen-
docrinological abnormalities have led to hypothesize 
the involvement of the hypothalamus [32], thus recon-
ceptualizing CH as a central disorder and shifting the 
focus of the research from peripheral mechanisms (e.g., 
irritation of trigeminal fibers in the cavernous sinus 
[19] to central mechanisms.

The first direct evidence of the validity of the central 
pathophysiological hypothesis and the possible involve-
ment of the hypothalamus was provided by the land-
mark PET neuroimaging study by May et  al. [42, 43], 
which showed robust activity in the posterior hypo-
thalamic area ipsilateral-to-pain during nitroglycerin-
induced attacks in patients with the chronic form of 
CH. Although the exact localization of this activity has 
been debated [54], subsequent studies confirmed hypo-
thalamic activity also in spontaneous attacks in both 
chronic (cCH) and episodic CH (eCH) [47, 57]. Further 
strengthening the hypothalamic hypothesis, May et  al. 
[41, ], employing voxel-based morphometry (VBM), also 
demonstrated a volumetric increase of the same brain 
region observed in their previous functional study. How-
ever, possibly because of the methodological limitations 
of this approach [71], some subsequent VBM investiga-
tions did not confirm these findings [2, 48, 69] also when 
employed in relatively large samples of episodic and cCH 
patients [39, 48, 69]. However, that structural altera-
tions may characterize the hypothalamus in CH was 
again highlighted by a study employing manual segmen-
tation [4], which showed increased volumes of bilateral 
anterior regions of this structure in different CH forms 
(chronic, episodic, and probable CH). Nevertheless, the 
observation of bilateral hypothalamic changes is chal-
lenged by the typically unilateral clinical features of CH 
attacks, which instead suggest an ipsilateral pattern, at 
least in critical structures. Manual segmentation can be 
indeed affected by inter- and intra-rater variability [7], 
particularly when, as in the case of the hypothalamus, it 
is applied to small and low-contrast magnetic resonance 
imaging (MRI) structures. Further complicating the pic-
ture, a recent study [31] employed a newly developed and 
state-of-the-art algorithm to segment the hypothalamus 

and its subunits [7] without showing any alterations in 
episodic CH patients.

The inconsistencies of previous results, probably due 
to methodological limitations, together with the lack of 
knowledge of the precise hypothalamic areas involved, 
limit a solid interpretation of the hypothalamus’ role in 
CH conditions.

Indeed, despite more than 20 years of studies, it is still 
unclear whether there are macroscopic hypothalamic 
changes in CH patients, whether they are bilateral or not, 
whether they are more typical of chronic or episodic CH 
patients, and whether they are linked to clinical variables 
(e.g., years of disease, number of attacks per day). These 
aspects are crucial to clarify: indeed, it would be possi-
ble to define whether the supposed hypothalamic abnor-
malities are a trait or a state of CH patients (if present in 
all CH patients or if present only in CH patients in-bout 
and in chronic CH patients), or whether they are related 
to chronic conditions (if present only in chronic CH 
patients). No less important is the need of determining 
with relative precision the hypothalamic nuclei involved 
in the pathophysiology of CH, trying also to fill the gap 
with clinical and preclinical studies. In this regard, if the 
first studies showed functional and anatomical abnor-
malities localized in the posterior section of the ipsilat-
eral-to-the pain hypothalamus in chronic CH patients 
[41–43], more recently, the study from Arkink (2016) 
suggested a bilateral involvement of the suprachiasmatic 
nucleus and of the paraventricular nucleus (PVN) of the 
hypothalamus.

The most prominent features of CH attacks can account 
for the abnormality of even the morphological nature of 
the suprachiasmatic nucleus, the endogenous biological 
clock [50]. Nevertheless, the PVN is now known to play 
a pivotal role in regulating circadian rhythms in metab-
olism and endocrine functions [28]. In addition, PVN 
neurons were shown to project to the superior salivary 
nucleus, which is involved in the autonomic phenomena 
of CH attacks [52, 68] and to the caudal spinal trigeminal 
nucleus (Sp5C) [52] as well as being critical in orches-
trating stress responses [13]. These observations make 
the PVN the most plausible hypothalamic key player in 
the pathophysiology of CH, particularly as a regulator of 
trigeminal activity.

In our study, we ought to define the precise hypotha-
lamic areas involved in CH pathophysiology, identifying 
volume abnormalities of hypothalamic nuclei grouped 
in subunits according to the subdivision proposed by 
Makris et  al. [35] and overcoming the main methodo-
logical problems. To this aim, we 1) analyzed a large 
sample of CH patients (105 participants), including both 
chronic and episodic forms (in-bout and out-of-bout), 2) 
employed the state-of-the-art algorithm for automatic 
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segmentation of hypothalamic subunits [7], already used 
in Lee’s study (2022) and the residual method for cor-
recting the measurements obtained for brain size [55], 
3) used various statistics to distinguish possible biases 
induced by physiological lateralization effects from genu-
ine abnormalities.

Remarkably, we characterized the observed abnormali-
ties with respect to the major clinical variables.

Finally, using a post-hoc approach, after identifying the 
antero-superior subunit as a crucial area of abnormality 
in cCH patients, we examined the functional connectiv-
ity between the subunit and the mesocorticolimbic sys-
tem under physiological conditions employing the 7  T 
resting-state functional MRI (rs-fMRI) public dataset 
from healthy participants of the Human Connectome 
Project [56, 64]. Indeed, data from the literature indicate 
the existence of robust interactions between the paraven-
tricular nucleus (located in the abnormal subunit) and 
the mesocorticolimbic system [5, 12, 24], which is func-
tionally and anatomically altered in cCH patients [14]. A 

common but crucial challenge inherent in many studies 
investigating brain morphology and function in patient 
populations is the effect of medications. Ethical consid-
erations discourage researchers from asking patients to 
discontinue medications prior to MRI, especially if these 
medications control painful states such as CH attacks. 
In line with this ethical approach, we did not ask partici-
pants in this study to discontinue the use of prescribed 
drugs, although we did try to control the effect of lithium, 
which is known to induce increases in some brain areas 
[1, 22, 37, 65, 70].

Materials and methods
Hypothalamic subunits in CH patients
The considered MRI data were obtained by merging 
two datasets (see Table 1 for a detailed description) col-
lected for different projects (dataset 1 collected between 
the 4th of October 2012 and the 18th of May 2015, data-
set 2 collected between the 18th of January 2019 and 
the 23rd of February 2022), but obtained from the same 

Table 1 Demographic and clinical data from the final sample employed for data analyses (2 eCH participants excluded for algorithm 
failure). The number of patients with ongoing prophylactic treatment also comprises the number of patients with ongoing lithium 
treatment

Abbreviations: CH Cluster headache, cCH Chronic cluster headache, eCH Episodic cluster headache, DS Dataset, n.a. not applicable, var. Variance, in in-bout, out out-of-
bout

(**) when in-bout, * significant value for p <0.05

Statistics and p-values
cCH eCH CTRL cCH vs eCH cCH vs CTRL eCH vs CTRL

Participants 57 48 59 n.a n.a n.a

Age (ys; M ± SD) 45 ± 11 46 ± 11 44 ± 10 U = 1243 0.42 U = 1653; p = 0.88 U = 1268 p = 0.355

Females/Males 11/46 5/43 12/47 X2 (1,105) = 1.59 0.21 X2 (1,116) = 0.02 p = 0.89 X2 (1,107) = 1.95 p = 0.163

Left, right, shifting 
CH attacks

20, 29, 8 22, 22, 4 n.a X2 (1,105) = 0.02 0.88 n.a n.a

Daily attacks 3 ± 2 2.5 ± 1.6 n.a U = 1291 0.19 n.a n.a

Years of chronic 
disease (M ± SD)

8 ± 6.8 n.a n.a n.a n.a n.a n.a

Pts under Lithium 15 4 n.a X2 (1,105) = 5.68 0.017* n.a n.a

Pts under prophy-
lactic treatment

45 17 n.a X2 (1,105) = 20.42 < 0.001* n.a n.a

VAS before MRI 
(Median- range)

0 (0–3) 0 (0) n.a U = NaN (var. = 0) n.a n.a n.a

cCH (DS1) cCH (DS2) Statistics and p-values eCH ‘in’ eCH ‘out’ Statistics and p-values
Participants 28 29 n.a 23 25

Age (ys; M ± SD) 45 ± 11 45 ± 10 U = 397 0.89 51 ± 8 42 ± 11 U = 414 0.009*

Females/Males 5/23 6/23 X2 (1,57) = 0.073 0.79 1/22 4/21 X2 (1, 48) = 1.74 0.19

Left, right, shifting 
CH attacks

12, 15, 1 8, 14, 7 X2 (1,57) = 0.16 0.7 9, 13, 1 13, 9, 3 X2 (1, 48) = 2.32 0.15

Daily attacks 
(M ± SD)

4 ± 2.1 2 ± 1.3 U = 627 < 0.001* 2.5 ± 1.9 2.4 ± 1.2 (**) U = 181 0.62

Years of chronic 
disease (M ± SD)

7 ± 6.2 9 ± 7.4 U = 349 0.37 n.a n.a n.a

Pts under Lithium 11 4 X2 (1, 57) = 4.77 0.029* 4 0 X2 (1, 48) = 4.74 0.029*

Pts under prophy-
lactic treatment

24 21 X2 (1, 57) = 1.52 0.22 16 1 X2 (1, 48) = 22.5 < 0.001*
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MRI scanner. Results from the first MRI dataset and 
unrelated to anatomical alterations of the hypothalamus 
have already been published [11, 14, 15]. Notably, the 
algorithm employed to segment the hypothalamus, as 
discussed in the introduction, is robust across different 
datasets [7].

Participants
In this study, a total of 107 adult CH patients were 
enrolled (> 18  years old): 57 had a cCH diagnosis (28 
patients were acquired for dataset 1 and 29 for dataset 2) 
and 50 had a eCH diagnosis (25 eCH ‘in-bout’ phase, 25 
in ‘out-of-bout’ phase, all acquired for dataset 2). A con-
trol (CTRL) group of 59 self-reported healthy individuals 
(28 participants acquired for dataset 1 and 31 acquired 
for dataset 2) with no history of primary headache or 
chronic pain were also enrolled. The diagnosis of CH 
was made by senior neurologists (M.L., L.G., and A.P.C.) 
according to the Diagnostic criteria of the International 
Classification of Headache (Dataset 1: Headache Classifi-
cation Committee of the International Headache Society 
(IHS), 2013 [20]; Dataset 2: The International Classifi-
cation of Headache Disorders, 3rd Edition, 2018 [21]). 
Patients with a concomitant diagnosis of other primary 
or secondary headache disorders, neurological diseases, 
cardiovascular diseases, diabetes mellitus, or hyperten-
sion were excluded from the study, as well as individu-
als reporting MRI contraindications or identified with 
abnormal MRI findings.

Two eCH ‘in-bout’ phase participants were excluded 
for algorithm failure during the segmentation process 
(see Table 1 for demographical and clinical data) leaving 
a total of 105 CH patients. The cCH group and the eCH 
group did not differ from the CTRL groups in terms of 
age and sex. The level of cranial pain immediately before 
the MRI session was assessed on a Visual Analog Scale 
(0 = no pain, 10 = the worst pain imaginable) [10]: both 
groups had a median of 0 (cCH range 0–3; eCH range: 
0–0), and no patient reported being under CH attack 
during the morphological MRI acquisition.

Notably, the cCH patients of dataset 1 and dataset 
2 differed for the number of headache attacks per day 
(patients from dataset 1: 4 ± 2.1; patients from dataset 
2: 2 ± 1.3; U = 627, p < 0.001) and for the proportions of 
participants under lithium treatment  [X2 (1, 57) = 4.77, 
p = 0.029]. Moreover, the cCH and the eCH ‘in-bout’ 
groups did not differ in terms of patients under lithium 
 [X2(1, 80) = 0.72, p = 0.40] and prophylactic treatments 
 [X2(1, 80) = 0.80, p = 0.37].

The study was planned and conducted in agreement 
with the latest revision of the Helsinki Declaration 
and approved by the Ethical Committee of the IRCCS 

Neurological Institute Carlo Besta. Each participant gave 
prior written informed consent.

MRI data of both datasets were acquired on the same 
3  T scanner (Achieva TX, Philips Healthcare BV, Best, 
NL) equipped with a 32-channels coil at the Neurologi-
cal Institute Carlo Besta. All participants underwent a 
single MRI session, comprising a volumetric high-reso-
lution structural 3D T1-weighted (3D-T1w) image with 
slightly different parameters (Dataset 1: TR = 9.86  ms, 
TE = 4.59  ms, FOV = 240 × 240  mm, voxel size = 1  mm3, 
flip angle = 8◦, 185 sagittal slices; Dataset 2: TR = 8.3 ms, 
TE = 3.8  ms, FOV = 240 × 240  mm, voxel size = 1  mm3, 
flip angle = 8◦, 180 sagittal slices). For each participant, 
‘recon-all’  algorithm of FreeSurfer software was applied 
to 3D-T1w images.

Segmentation outputs were visually checked and cor-
rected manually by expert operators (G.D., D.F., G.C.) 
blinded to the condition of every individual (cCH, eCH, 
or CTRL) to remove any inaccuracies in the pial-white 
boundary surfaces segmentation. Then, automated seg-
mentation of hypothalamic subunits was performed 
employing the ‘mri_segment_hypothalamic_subunits’ 
algorithm of FreeSurfer software v7.2 (https:// surfer. nmr. 
mgh. harva rd. edu/ fswiki/ Hypot halam icSub units).

The automatic algorithm segmented the following 
bilateral subunits: anterior-inferior (associated with the 
suprachiasmatic nucleus and supraoptic nucleus), ante-
rior–superior (associated with the preoptic area and 
paraventricular nucleus), posterior (associated with the 
mammillary body, lateral hypothalamus, and tubero-
mammillary nucleus), tubular-inferior (associated with 
the infundibular nucleus, ventromedial nucleus, and lat-
eral tubular nucleus) and tubular-superior (associated 
with the dorsomedial nucleus, paraventricular nucleus, 
and lateral hypothalamus) [7, 35] (Fig. 1). For each par-
ticipant, the segmentation pipeline produced the mask 
of each hypothalamic subunit (visually checked by expert 
operators: G.D., D.F., G.C.) and their respective volumes 
(expressed in  mm3. Intracranial volume (ICV of each 
participant was obtained employing CAT12 (CAT12; 
[17], http:// www. neuro. uni- jena. de/ cat/).

Statistical analyses
All the statistical analyses were conducted on the sample 
resulting from the union of dataset 1 and dataset 2 using 
JASP (v. 0.17.1.0) (https:// jasp- stats. org). Due to the solid 
a priori hypothesis of an involvement of the ipsilateral 
hypothalamus in CH condition, we conducted the anal-
yses separately for the ipsilateral and contralateral-to-
the-cranial pain (hereafter, only defined as ‘ipsilateral’ or 
‘contralateral’) hypothalamic subunit volumes: the ipsi-
lateral measures correspond to the left side of the brain 
of CTRL participants while the contralateral measures 

https://surfer.nmr.mgh.harvard.edu/fswiki/HypothalamicSubunits
https://surfer.nmr.mgh.harvard.edu/fswiki/HypothalamicSubunits
http://www.neuro.uni-jena.de/cat/
https://jasp-stats.org
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matched to the right volumes of the brain of CTRL par-
ticipants. The volumes of the patients suffering from 
shifting attacks (experiencing right-sided and left-sided 
attacks) were matched according to the original laterali-
zation of the attacks (i.e., left measures matched to the 
left volumes of the brain of CTRL participants).

After verifying the presence of no outliers for ICV 
employing the interquartile range (IQR) method [66], 
the extracted volumes (VOIs) of the hypothalamic subu-
nits were then corrected for brain size with the residu-
als method [38, 55]. Briefly, for each participant and 
each VOI, the adjusted volume of interest (adjVOI) 
was computed based on the equation adjVOI = VOI—
b(ICV—ICVmean) where the parameter b is the slope of 
the ICV-VOI regression line, and  ICVmean is the mean of 
the ICV values of CTRL group. Notably, we computed 
the adjVOIs separately for dataset 1 and dataset 2 based 
on the b values and  ICVmean obtained from the respective 
CTRL group.

Predicting the diagnosis from the hypothalamic subu-
nits The adjVOIs were then entered into binary logis-
tic regression models to identify if they could distinguish 
patients from CTRL. In particular, we verified their sta-
tistical association with respect to (1) the cCH and CTRL 
diagnosis and (2) the eCH and CTRL diagnosis.

For each statistical association, we used a 3-block model 
comprising: model #1, including the demographic/
clinical variables only (dataset to which the individ-
ual belongs -dataset 1 or dataset 2-, age, sex, type of 

attacks—unilateral or shifting); model #2, including 
model#1 as null model and the adjVOIs of the contralat-
eral hypothalamic subunits; model #3 including model #1 
and #2 as null model and the adjVOIs of the ipsilateral 
hypothalamic subunits. The diagnostic discrimination 
accuracies of the logistic regression models were evalu-
ated using the area under a receiver operating character-
istics curve (AUC). Odds ratios and the corresponding 
p-values (computed with the Wald test, testing for the 
significance of individual coefficients in the model) were 
also calculated for each hypothalamic subunit. Logistic 
regression models were used since they do not require 
a linear relationship between the predictor variable and 
the response variable and the normal distribution and the 
constant variance (homoscedasticity) of the residuals. All 
the results were considered significant for p ≤ 0.05.

As the patients with cCH from the two datasets differed 
in terms of the number of daily headaches, we performed 
the same analysis as above (3-block logistic regression 
model) only for the patients with the highest number of 
attacks (cCH from dataset 1).

Identifying possible bias due to lateralization effects To 
identify possible bias in the previous analyses due to 
physiological lateralization effects (i.e., volume asym-
metry), we performed a series of t-tests in a hierar-
chical sequence. For this purpose, adjVOIs were log-
transformed and then checked for normality using 
Shapiro–Wilk test. When normality was violated, non-
parametric t-tests were applied.

Fig. 1 Coronal MRI images (3D T1-weighted) of the segmentation of the hypothalamus (with magnification) of one brain participant 
from the investigated sample obtained with FreeSurfer software v7.2 (https:// surfer. nmr. mgh. harva rd. edu/ fswiki/ Hypot halam icSub units). 
Abbreviations: R: right, L: left

https://surfer.nmr.mgh.harvard.edu/fswiki/HypothalamicSubunits
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First, we tested whether, in the CTRL individuals, there 
were differences between the left and right subunits that 
emerged as significant from the logistic regression mod-
els (subunits of interest) using one-tail paired-sample 
t-tests. Using a conservative approach, in the case of 
significant differences, we considered the results of the 
logistic regression models as biased by physiological 
asymmetry and no longer considered them relevant for 
this work.

Secondly, we checked whether the remaining subunits 
of interest (i.e., which emerged as significant from the 
logistic regression models and showing no lateralization 
effects in the CTRL sample) in the patients’ group (cCH 
or eCH) also retained their significance compared to the 
mean of the corresponding right and left subunits in the 
CTRL group. For this purpose, we performed independ-
ent sample t-tests with and without patients with shift-
ing CH attacks. In the case of non-significant values, we 
cautiously interpreted the results biased by subtle differ-
ences between the left and right corresponding subunits 
in CTRL participants.

Thirdly, we tested whether in the CH group (cCH or 
eCH) there were significant differences between the 
homologous (ipsilateral and contralateral) structures of 
the remaining subunits of interest (i.e., emerged as sig-
nificant from the logistic regression models, showing no 
lateralization effects in the CTRL sample, and maintain-
ing their significant effects also when compared to the 
mean values of the left and right subunit of CTRL par-
ticipants). For this purpose, we used the one-tail paired-
sample t-test. Again, we performed the analyses with and 
without patients with shifting CH attacks. All the results 
were considered significant for p ≤ 0.05.

Effects of years of chronic disease and lithium therapy in 
cCH patients Correlation analyses were used to iden-
tify whether, in cCH patients, the volumes (expressed as 
log-transformed adjVOIs) of the subunits of interest (i.e., 
emerged as significant from the logistic regression mod-
els, showing no lateralization effects in the CTRL sample 
and maintaining their significant effects also when com-
pared to the mean values of the left and right subunit of 
CTRL participants) correlated with years of the chronic 
condition or with the numbers of headache attacks per 
day.

Moreover, a binary logistic regression model was used 
to identify whether the volumes of the subunits of inter-
est (predictors expressed as adjVOIs) were associated 
with the ongoing Lithium therapy (dependent variable). 
To this aim, we used a 2-block model with model #1 

including the demographic/clinical variables only (data-
set, age, sex, type of attacks) and model #2, including 
model #1 as null model and the adjVOIs of the subunits 
of interest. All the results were considered significant for 
p ≤ 0.05.

Functional connectivity of hypothalamic subunits 
in healthy participants
As a post-hoc approach, to determine whether the hypo-
thalamic subunits identified as abnormal in CH patients 
presented robust functional connectivity with areas of 
the mesocorticolimbic system under physiological condi-
tions rs-fMRI data from 167 participants (age: M = 29.3, 
SD = 3.3; 99 females) of the publicly available Human 
Connectome Project dataset (HCP—Young Adult; for 
details https:// www. human conne ctome. org/ hcp- proto 
cols- ya- 7t- imagi ng [56, 64]) were used. To this end, a 
region of interest-to-region of interest (ROI-to-ROI) con-
nectivity analysis with CONN toolbox v21a (www. nitrc. 
org/ proje cts/ conn) [49], was performed. As declared by 
HCP, all participants provided written informed consent 
to the study and the sharing of de-identified data.

For each participant, we employed the 4 rs-fMRI data 
runs acquired at 7 T (900 volumes per run, 1.6 mm iso-
tropic voxels, TR = 1000 ms, TE = 22.2 ms, flip angle = 45 
degrees, FOV = 208 × 208  mm; [56, 63] and already pre-
processed (HCP filename: ‘rfMRI ∗ hp2000_clean.nii.gz’). 
The HCP rs-fMRI preprocessing steps comprised gra-
dient nonlinearity-induced distortion correction, rigid 
body head motion correction, EPI image distortion cor-
rection, co-registration between the fMRI and structural 
data, normalization to MNI space, high-pass filtering, 
brain masking [18] and independent components analy-
sis-based artifact removal of noise components [53]. As 
structural MRI data, we employed, as indicated by HCP 
for the 7 T rs-fMRI dataset, the 3 T T1-weighted image 
resampled at 1.6  mm resolution (HCP filename: ‘T1w_
restore.1.6.nii.gz’).

To produce reliable functional connectivity results, we 
defined the anatomical ROIs of the hypothalamic subu-
nits at the single-subject level by applying the ‘mri_seg-
ment_hypothalamic_subunits’ algorithm (FreeSurfer 
v7.2) to the 3 T T1-weighted image at 1 mm resolution 
(as recommended in https:// surfer. nmr. mgh. harva rd. 
edu/ fswiki/ Hypot halam icSub unit—HCP filename: ‘T1w_
restore.nii.gz’) of each participant. From the initial data-
set, one participant was excluded due to an error in the 
segmentation process. The following ROIs for the meso-
corticolimbic system were selected: the nucleus accum-
bens, the amygdala, the hippocampus, the medial and 
orbital prefrontal cortex, and the frontal pole from the 
Harvard–Oxford atlas available in CONN, while the ROI 
of the ventral tegmental area from a publicly available 

https://www.humanconnectome.org/hcp-protocols-ya-7t-imaging
https://www.humanconnectome.org/hcp-protocols-ya-7t-imaging
http://www.nitrc.org/projects/conn
http://www.nitrc.org/projects/conn
https://surfer.nmr.mgh.harvard.edu/fswiki/HypothalamicSubunit
https://surfer.nmr.mgh.harvard.edu/fswiki/HypothalamicSubunit
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probabilistic atlas [61]. The subject-specific ROIs of the 
hypothalamic subunits emerged as significant from the 
logistic regression models, as well as mesocorticolimbic 
ROIs were used in the ROI-ROI analysis in CONN. Then, 
MRI data underwent the following denoising steps: iden-
tification of outlier volumes through Artifact Detection 
Tools (ART), functional smoothing (FWHM = 6  mm), 
and physiological denoising through aCompCor. Sub-
sequently, in each participant, the mean average BOLD 
time series of each selected ROI (extracted from the 
unsmoothed and denoised rs-fMRI volumes) was com-
puted, and for each possible pair of ROIs, a Fisher trans-
formed bivariate correlation coefficient was obtained. 
ROI-to-ROI rs-fMRI functional connectivity matrices 
were calculated, and parametric multivariate statistics 
were applied (cluster threshold: p < 0.05 cluster-level, 
p-FDR corrected—MVPA omnibus test; connection 
threshold: p < 0.05 uncorrected).

Results
Predicting the diagnosis from the hypothalamic subunits
Descriptive statistics for the adjVOI of the hypo-
thalamus subunits are reported in Table  2 (see also 
Figs.  2 and 3). Logistic regression results are reported 
in Tables  3 and 4. In the 3-block logistic regression 
model, the diagnosis of cCH with respect to CTRL 

was significantly better predicted by model #3 [i.e., 
demographic/clinical variables and contralateral 
hypothalamic subunits as null model and ipsilateral 
hypothalamic subunits (Χ2(101) = 11.74, p = 0.039, 
Nagelkerke R2 = 0.137)] than by model #2 (i.e., demo-
graphic/clinical variables ad null model and con-
tralateral hypothalamic subunits), which, on the other 
hand, did not yield significant results (Χ2(106) = 8.044, 
p = 0.154, Nagelkerke R2 = 0.093) compared to model #1 
[i.e., demographic/clinical variables; (Χ2(111) = 12.67, 
p = 0.013, Nagelkerke R2 = 0.138)]. As expected, model 
#3 achieved better performance (AUC = 0.77) in com-
parison to model #2 (AUC = 0.69) and model #1 
(AUC = 0.61). These results indicate that only the ipsi-
lateral, and not the contralateral, subunits could dis-
criminate cCH from CTRL participants. Importantly, 
among the ipsilateral measures, only the anterior–
superior and tubular-inferior subunit significantly pre-
dicted the diagnosis (respectively, OR = 1.16, p = 0.034; 
OR = 0.95, p = 0.037). More specifically, the ipsilateral 
anterior–superior subunit presented a larger volume 
in cCH patients (M = 25.62  mm3; 95% CI = 24.6–26.6 
 mm3) in comparison to CTRL participants (M = 24.51 
 mm3; 95% CI = 23.57–25.47), while tubular-inferior 
subunit presented an opposite pattern (respectively, 
M = 142.18  mm3; 95% CI = 138.73–145.64 in cCH 

Table 2 Descriptive statistics for the volumes of each subunit corrected in respect to the total intracranial volume (computed with 
CAT12) employing the residuals method (adjVOI, see the main text)

Ipsilateral Subunits Volumes (mm3) Contralateral Subunits Volumes (mm3)

cCH patients Ant. inf Ant. sup Posterior Tub. inf Tub. sup Ant. inf Ant. sup Posterior Tub. inf Tub. sup

Median 18.32 25.91 128.56 139.52 114.11 17.26 24.81 125.29 139.23 116.13

Mean 18.25 25.62 128.05 142.18 114.29 17.47 24.69 127.20 139.56 115.64

95% CI Mean Upper 19.64 26.60 132.47 145.64 117.59 18.54 25.75 131.16 142.79 118.80

95% CI Mean Lower 16.85 24.64 123.63 138.73 110.99 16.40 23.63 123.25 136.32 112.48

Maximum 4.46 18.98 83.19 117.70 85.47 8.56 17.15 97.36 108.60 95.21

Minimum 35.41 33.42 166.63 180.53 139.51 27.63 35.11 157.14 171.78 145.73

eCH patients
 Median 13.98 23.41 120.67 141.66 118.42 15.30 25.20 121.64 138.17 119.73

 Mean 14.32 23.60 118.05 141.19 117.36 14.83 24.48 118.36 137.14 118.48

 95% CI Mean Upper 15.46 25.08 121.94 145.86 120.74 16.06 25.72 123.49 142.45 121.64

 95% CI Mean Lower 13.18 22.13 114.15 136.52 113.98 13.61 23.24 113.24 131.83 115.32

 Maximum 3.31 10.77 73.83 110.02 87.88 5.17 14.82 42.23 63.35 86.83

 Minimum 22.67 31.78 138.68 183.76 140.22 22.38 34.58 144.71 164.29 137.38

CTRL participants
 Median 17.45 24.55 124.05 146.26 115.44 16.56 24.24 124.48 136.64 115.27

 Mean 17.29 24.52 124.70 145.40 117.07 16.11 24.41 123.31 136.53 115.40

 95% CI Mean Upper 18.33 25.47 127.84 148.20 120.13 17.32 25.53 126.49 139.50 118.53

 95% CI Mean Lower 16.25 23.57 121.55 142.60 114.00 14.91 23.29 120.12 133.56 112.26

 Maximum 7.97 15.57 98.21 121.43 96.88 2.27 13.77 101.89 111.89 87.58

 Minimum 28.61 33.70 163.56 173.40 148.43 24.84 34.87 156.34 169.52 137.54
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patients and M = 145.4  mm3; 95% CI = 142.60- 148.20 
in CTRL individuals).

The 3-block binary logistic regression model per-
fomed only on cCH patients of dataset 1 and CTRL 
participants showed that the diagnosis of cCH was 
significantly better predicted by model #3 [i.e., demo-
graphic/clinical variables and contralateral hypo-
thalamic subunits as null model and ipsilateral 
hypothalamic subunits (Χ2(42) = 29.1, p < 0.001, Nagel-
kerke R2 = 0.556)] than by model #2 (i.e., demographic/

clinical variables as null model and contralateral hypo-
thalamic subunits), which, on the other hand, did not 
yield significant results (Χ2(47) = 7.029, p = 0.219, 
Nagelkerke R2 = 0.159) compared to model #1 (i.e., 
demographic/clinical variables). As expected, model 
#3 achieved better performance (AUC = 0.90) in com-
parison to model #2 (AUC = 0.70) and model #1 
(AUC = 0.53). In this case, the only significant hypotha-
lamic subunit in the full model was the ipsilateral ante-
rior–superior subunit (OR = 1.87, p = 0.001).

Fig. 2 Plots of the volumes of the hypothalamic subunits normalized for the brain size according to the residual method (adjVOIs) in cCH and CTRL 
participants. For representational purposes, patients with shifting attacks were excluded. Abbreviations: cCH patients: chronic cluster headache 
patients, CTRL: control participants
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Also with regard to eCH patients, the 3-block model 
showed that diagnosis of eCH with respect to CTRL 
was significantly better predicted by model #3 [i.e., 
demographic/clinical variables, contralateral hypo-
thalamic subunits and ipsilateral hypothalamic subu-
nits (Χ2 (92) = 22.796, p < 0.001, Nagelkerke R2 = 0.339) 
compared to model #2 (i.e., demographic/clinical 
variables and contralateral hypothalamic subunits) 
which did not yield significant results (Χ2(97) = 10.05, 

p = 0.074, Nagelkerke R2 = 0.148) compared to model #1 
[i.e., demographic/clinical variables; (Χ2(102) = 47.85, 
p < 0.001, Nagelkerke R2 = 0.483)]. In agreement, model 
#3 performed better (AUC = 0.94) than model #2 
(AUC = 0.88) and model #1 (AUC = 0.81). Also in this 
case, the results indicate that only the ipsilateral, and 
not the contralateral, subunits could discriminate eCH 
from CTRL participants. Remarkably, among the ipsi-
lateral measures, the anterior-inferior (OR = 0.756, 

Fig. 3 Plots of the volumes of the hypothalamic subunits normalized for the brain size according to the residual method (adjVOIs) in eCH and CTRL 
participants. For representational purposes, patients with shifting attacks were excluded. Abbreviations: eCH: episodic cluster headache patients, 
CTRL: control participants
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p = 0.025), anterior–superior (OR = 0.801, p = 0.045), 
and tubular-inferior subunit (OR = 0.934, p = 0.022) sig-
nificantly predicted the diagnosis. More specifically, all 
these subunits presented a smaller medium volume in 
eCH patients (anterior-inferior: M = 14.32  mm3, 95% 
CI = 13.18–15.46; anterior–superior: M: 23.60  mm3, 
95% CI = 22.13–25.8; tubular-inferior: M = 141.19 
 mm3, 95% CI = 136.52–145.86) in comparison to CTRL 
participants (anterior-inferior: M = 17.29  mm3, 95% 
CI = 16.25–18.33; anterior–superior: M = 24.52  mm3, 
95% CI = 23.57–25.47; tubular-inferior: M = 145.40  mm3, 
95% CI = 142.60–148.22).

Identifying possible bias due to lateralization effects
The anterior-inferior, anterior–superior, and tubular-
inferior subunits emerged as significant from the logistic 
regression models were considered.

The one-tail paired-sample t-test investigating the possi-
ble lateralization effects in CTRL participants for the subu-
nits of interest (i.e., that were shown to discriminate cCH 
from CTRL and eCH from CTRL) indicated that the left 
anterior-inferior subunit and tubular-inferior subunit were 
significantly different from their right counterparts (respec-
tively, W = 1145, z = 1.962, p = 0.025; T(58) = 7.139, z = 1.962, 
p < 0.001). No difference was instead detected between the 
left and right anterior–superior subunits (T(58) = 0.340, 
p = 0.367). Thus, subsequent analyses were only applied to 
test abnormalities in the ipsilateral anterior–superior subu-
nit in both CH groups (i.e., cCH and eCH).

The one-tail independent sample t-tests investigating 
the differences between the ipsilateral anterior–superior 

subunit of cCH patients and the mean of the left and 
right respective subunit in CTRL participants showed 
that this subunit was significantly different between the 
two groups either when computed with patients suffer-
ing from shifting attacks (T(114) = 1664, p = 0.049) and 
without (T(106) = 1.993,p = 0.024). Notably, we did not 
find a similar effect for eCH patients (with patients with 
shifting attacks: W = 1281, p = 0.200; without patients 
with shifting attacks: W = 1191, p = 0.239). Thus, as 
a precautionary measure, in eCH patients, we did not 
consider anterior–superior subunit.

The one-tail paired-sample t-test investigating the 
differences between the ipsilateral and contralateral 
anterior–superior subunits in cCH patients showed 
that these two subunits were significantly different 
(T(56) = 1.706, p = 0.047). However, when patients 
with shifting attacks (T(48) = 1.331, p = 0.095) were 
excluded, the effect did not reach the significance. 
Notably, ipsilateral subunit presented larger volumes 
in comparison to the contralateral subunit with (ipsi-
lateral: M = 25.62, 95% CI = 24.64–26.60, contralateral: 
M = 24.69, 95% CI = 23.63–25.75) and without (ipsi-
lateral: M = 25.91, 95% CI = 24.83–26.99 contralateral: 
M = 25.09, 95% CI = 24.00–26.19) patients with shift-
ing attacks. We computed the coefficients of variation, 
which showed more variability for the contralateral 
subunits (sample with patients with shifting attacks: 
0.053, sample without patients with shifting attacks: 
0.050) with respect to the ipsilateral subunits (sample 
with patients with shifting attacks: 0.046, sample with-
out patients with shifting attacks: 0.047).

Table 3 3-block binary logistic regression models (diagnosis as response variable) results comprising: model #1, including the 
demographic/clinical variables only (dataset to which the individual belongs -dataset 1 or dataset 2-, age, sex, type of attacks—
unilateral or shifting); model #2, including model#1 as null model and the adjVOIs of the contralateral hypothalamic subunits; model 
#3 including model #1 and #2 as null model and the adjVOIs of the ipsilateral hypothalamic subunits

Abbreviations: cCH Chronic cluster headache, eCH Episodic cluster headache, CTRL Healthy participants, AUC  Area under a receiver operating characteristics curve, DEM 
Demographic/clinical variables, IPSI Ipsilateral-to-the cranial pain subunits, CONTRA  Contralateral to the cranial pain subunits

Model df Χ2 p R2 AUC Sensitivity Specificity Precision

cCH vs. CTRL
 Intercept 115

 Model 1 (DEM) 111 12.669 0.013 0.138 0.609 0.439 1 1

 Model 2 (DEM + CONTRA) 106 8.044 0.154 0.093 0.693 0.579 0.729 0.673

 Model 3 (DEM + CONTRA + IPSI) 101 11.737 0.039 0.137 0.767 0.667 0.78 0.745

eCH vs. CTRL
 Intercept 106

 Model 1 (DEM) 102 47.852 < .001 0.483 0.814 0.896 0.593 0.642

 Model 2 (DEM + CONTRA) 97 10.054 0.074 0.148 0.875 0.813 0.78 0.75

 Model 3 (DEM + CONTRA + IPSI) 92 22.796 < .001 0.339 0.936 0.833 0.847 0.816
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Effects of years of chronicisation and Lithium therapy 
in cCH patients
In cCH patients, we found a significant linear associa-
tion between the anterior–superior subunit volumes and 
the daily number of cluster headache attacks (r = 0.311, 
p = 0.020 – normality data distribution checked with 
Shapiro–Wilk) (see Fig.  4), while no significant linear 
association was observed with the years of chronic dis-
ease (r = -0.039, p = 0.773, – normality data distribution 
checked with Shapiro–Wilk).

Furthermore, in the 2-block logistic regression model 
investigating the role of lithium therapy in determining 

the observed hypothalamic abnormalities, model #2 did 
not better discriminate between cCH patients on the 
basis of lithium therapy (Χ2(51) = 3.32, p = 0.068, Nagel-
kerke R2 = 0.091) with respect to model #1 [i.e., demo-
graphic/clinical variables] (Χ2(52) = 9.75, p = 0.045, 
Nagelkerke R2 = 0.230).

Functional connectivity of hypothalamic subunits 
of interest
Results of rs-fMRI data from the HCP dataset in healthy 
participants showed that both right and left antero-supe-
rior hypothalamic subunits exhibit robust functional 

Table 4 Parameters of the full models (model #3) of the 3-block binary logistic regression models (diagnosis as response variable) 
comprising including model #1 and #2 as null model. P-values were computed with the Wald test testing for the significance of 
individual coefficients in the model

Abbreviations: cCH Chronic cluster headache, eCH Episodic cluster headache, CTRL Healthy participants, IPSI Ipsilateral-to-the cranial pain subunits, CONTRA  
Contralateral to the cranial pain subunits

Parameters b SE OR z p LB UB

cCH vs CTRL
Intercept -4.498 4.221 0.011 -1.066 0.287 -12.770 3.775

Sex 0.094 0.562 1.098 0.167 0.867 -1.007 1.195

Age 0.015 0.024 1.016 0.653 0.514 -0.031 0.062

Type of attacks 18.588 1266.085 1.183 ×  10+8 0.015 0.988 -2462.892 2500.069

Dataset -0.107 0.544 0.898 -0.197 0.843 -1.174 0.959

CONTRA Anterior-Inferior 0.032 0.069 1.032 0.458 0.647 -0.104 0.167

CONTRA Anterior–Superior -0.015 0.066 0.985 -0.230 0.818 -0.145 0.115

CONTRA Posterior 0.007 0.026 1.007 0.281 0.778 -0.043 0.058

CONTRA Tubular-Inferior 0.052 0.024 1.053 2.168 0.030 0.005 0.099

CONTRA Tubular-Superior 0.001 0.026 1.001 0.022 0.982 -0.051 0.052

IPSI Anterior-Inferior 0.016 0.063 1.016 0.255 0.799 -0.107 0.139

IPSI Anterior–Superior 0.147 0.070 1.159 2.117 0.034 0.011 0.284

IPSI Posterior 0.016 0.020 1.016 0.789 0.430 -0.023 0.055

IPSI Tubular-Inferior -0.050 0.024 0.951 -2.084 0.037 -0.097 -0.003

IPSI Tubular-Superior -0.030 0.025 0.970 -1.220 0.222 -0.079 0.018

eCH vs CTRL
Intercept -50.762 3408.109 8.998 ×  10–23 -0.015 0.988 -6730.533 6629.008

Sex 0.353 0.800 1.423 0.441 0.659 -1.215 1.921

Age 0.067 0.035 1.069 1.890 0.059 -0.002 0.136

Type of attacks 20.416 4614.617 7.355 ×  10+8 0.004 0.996 -9024.068 9064.900

Dataset 22.384 1704.051 5.261 ×  10+9 0.013 0.990 -3317.495 3362.262

CONTRA Anterior-Inferior 0.127 0.093 1.135 1.358 0.174 -0.056 0.310

CONTRA Anterior–Superior 0.157 0.114 1.170 1.381 0.167 -0.066 0.380

CONTRA Posterior 0.062 0.041 1.064 1.506 0.132 -0.019 0.143

CONTRA Tubular-Inferior -0.039 0.032 0.962 -1.225 0.221 -0.101 0.023

CONTRA Tubular-Superior 0.070 0.043 1.073 1.629 0.103 -0.014 0.155

IPSI Anterior-Inferior -0.279 0.124 0.756 -2.243 0.025 -0.523 -0.035

IPSI Anterior–Superior -0.222 0.111 0.801 -2.006 0.045 -0.440 -0.005

IPSI Posterior -0.006 0.044 0.994 -0.127 0.899 -0.092 0.081

IPSI Tubular-Inferior -0.068 0.030 0.934 -2.299 0.022 -0.126 -0.010

IPSI Tubular-Superior 0.065 0.043 1.067 1.495 0.135 -0.020 0.149
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connectivity extending bilaterally with all subcortical 
structures of the mesocorticolimbic system (nucleus 
accumbens, amygdala, hippocampus, bilateral ventral 
tegmental area) and with the medial frontal cortex (see 
Additional file 1: Table 1 in SM and Fig. 5).

Discussion
In this study, we ought to determine the specific hypotha-
lamic nuclei engaged in CH pathophysiology. To this aim, 
we utilized a state-of-the-art, fully automated algorithm 
[7] to extract the volumes of hypothalamic subunits (in 

agreement with the anatomical subdivision proposed by 
Makris et al. [35] from MRI brain data obtained from a 
large group of CH patients and from a CTRL group and 
we performed the relevant comparisons of the obtained 
normalized measures.

Our results revealed distinct patterns of volumetric dif-
ferences: specifically, patients with the chronic form of 
CH (i.e., cCH) exhibited increased volumes of the ipsi-
lateral antero-superior subunit, while no significant evi-
dence of hypothalamic abnormalities was observed in 
patients with eCH. More importantly, we found that the 
volumes of this hypothalamic subunit in cCH patients 
correlate with the number of daily headache attacks, but 
not with the number of years of chronic disease; moreo-
ver, it does not appear to be related to lithium treatment.

Together, these results indicate that the ipsilateral volu-
metric increase of this region is a biological marker of the 
chronic form of CH and not a marker of disease progres-
sion or Lithium effects.

Our findings not only corroborate previous research 
highlighting the involvement of the ipsilateral-to-pain 
hypothalamus in the pathophysiology of CH [33, 45] but 
also support the recent animal literature indicating that 
the paraventricular nucleus of the hypothalamus (PVN), 
located with the preoptic area in the antero-superior 
subunit, is robustly involved in headache mechanisms 
[52, 68].

Furthermore, with a post-hoc approach, based on the 
evidence of close interactions between the PVN and 
the mesocorticolimbic system [5, 12, 24] and consider-
ing the abnormalities of the mesocorticolimbic system 
observed in cCH patients [14], we used the 7  T MRI 
rs-fMRI dataset from the Human Connectome Pro-
ject [56, 64] to investigate the functional connectivity 
between the anterior–superior hypothalamic subunit 
and key structures/areas of the mesocorticolimbic sys-
tem. The high spatial resolution and the high statistical 

Fig. 4 Scatter plot of the correlation between the volumes 
of the ipsilateral antero-superior hypothalamic subunit 
and the number of attacks per day in cCH patients (chronic cluster 
headache patients). Volumes are expressed as LOG of the normalized 
measures (adjVOI)

Fig. 5 ROI-to-ROI functional connectivity from 166 healthy individuals of the 7 T Human Connectome Project (HCP) rs-fMRI dataset for the anterior–
superior hypothalamic sub-unit within the areas/structures of the mesocorticolimbic system. Results are significant for parametric multivariate 
statistics (cluster threshold: p < 0.05 cluster-level, p-FDR corrected—MVPA omnibus test; connection threshold: p < 0.05 uncorrected). Abbreviations: 
hyp ANT-SUP = anterior–superior hypothalamic sub-unit, Medial PFC = medial prefrontal cortex, AMY = amygdala, HIPP = hippocampus, 
F.Orb. = frontal orbital, F Pole = frontal pole, VTA = ventral tegmental area, Nacc = nucleus accumbens, R = right, L = left
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power (4 rs-fMRI runs, each one of 900 volumes, from 
166 participants) of this dataset associated with the 
single-subject level segmentation of the hypothalamic 
anterior–superior subunit of interest, allowed a defini-
tion of the functional connectivity of this area in physi-
ological conditions. The results demonstrate robust 
functional connectivity between this hypothalamic 
subunit and the subcortical structures of the meso-
corticolimbic system (ventral tegmental area, nucleus 
accumbens, amygdala, and hippocampus).

The previous literature [45] and the specific clinical 
features of CH (i.e., unilateral craniofacial pain and ipsi-
lateral-to-the-craniofacial pain trigeminal autonomic 
symptoms) robustly support an involvement of the 
ipsilateral hypothalamus in CH. Nevertheless previous 
neuroimaging studies conducted with VBM reported 
inconsistent results [2, 41, 48, 69], probably due to the 
limitations of the applied algorithm [71]. More recently, 
Arkink et  al. [4], employing T1-weighted images 
acquired with 1.5  T MRI, reported an increase in the 
volumes of the ipsilateral anterior regions of the hypo-
thalamus (according to the Authors possibly involving 
the suprachiasmatic nucleus and the PVN) in patients 
with cCH when employing VBM. However, hypotha-
lamic manual segmentation in the same study revealed 
an increase in volumes bilaterally in the same region for 
all CH patients (both chronic and episodic), thus sug-
gesting that manual segmentation may be more sensi-
tive in detecting hypothalamic alterations compared to 
VBM. It is important to note that although manual seg-
mentation of brain structures on MRI images is consid-
ered the gold standard in terms of accuracy, it is prone 
to significant intra- and inter-observer variability, 
which can lead to differences in reported results [58]. 
This variability is particularly challenging for hypotha-
lamic subunits due to their small volumes and lack of 
MRI contrast, making their manual delineation less 
reproducible and more prone to variability [7]. Despite 
the important findings of Arkink et  al. [4] indicating 
alterations in the anterior regions of the hypothalamus, 
the limitations of manual segmentation could explain 
the fact that anterior hypothalamus abnormalities were 
reported bilaterally, a finding that appears to be at odds 
with the unilateral clinical features of CH.

Our study, using an automated algorithm for hypo-
thalamic subunit segmentation, partially aligns with the 
findings of Arkink et  al. [4] by showing an enlargement 
of ipsilateral anterior region of the hypothalamus, specifi-
cally the ipsilateral anterior–superior hypothalamic sub-
unit, in patients with cCH. Still, it does not replicate the 
observations of abnormal bilateral anterior hypothalamus 
in cCH and eCH patients. Interestingly, a recent study by 
Lee et al. [31] which employed the same algorithm as our 

study, found no evidence of abnormal hypothalamic sub-
units in patients with eCH, supporting our findings.

Remarkably, our results are a fundamental step further 
in the comprehension of the pathophysiology of chronic 
CH in relation to the possible involvement of PVN [68]. 
Organized in several discrete subnuclei, the PVN houses 
the so-called preautonomic neurons of both sympathetic 
and parasympathetic systems [6] as well as neurons con-
stituting the hypothalamic–pituitary–adrenal (HPA) axis 
(corticotrophin-releasing hormone (CRH) expressing 
neurons, projecting to the anterior pituitary where they 
induce the secretion of adrenocorticotropin hormone 
(ACTH)) and the hypothalamo-neurohypophyseal sys-
tem (oxytocin and vasopressin expressing magnocellular 
neurons projecting to the posterior pituitary where they 
release oxytocin and vasopressin into the blood circula-
tion) [59].

The PVN hypothalamic nucleus is integral to maintain-
ing autonomic and endocrine homeostasis [26] and it 
plays a crucial role in orchestrating responses to real or 
perceived stress by activating, through the CRH, the HPA 
axis [13]. At this regard, it is well known that CH patients 
are characterized by HPA hyperactivity [32] and that 
vagal nerve stimulation, able to control episodic cluster 
headache attacks when used non-invasively [44] induces 
anti-inflammatory responses by modulating the activity 
of the CRH-PVN neurons and thus the HPA axis [8].

Notably, the PVN, along with the supraoptic nucleus, 
is the only site of oxytocin production in the brain [59]. 
Oxytocin is a neuropeptide with various physiological 
actions, including the induction of uterine muscle con-
tractions during childbirth and lactation, as well as the 
modulation of social behavior, memory, mood, and anxi-
ety [27]. Oxytocin has also been found to play a promi-
nent role in pain modulation through both central and 
peripheral pathways [25]. Notably, the oxytocin PVN 
neurons project to the superior salivary nucleus, which 
is involved in autonomic phenomena of CH attacks [52, 
68] and to the caudal spinal trigeminal nucleus (Sp5C) 
[52]. Recent studies have shown that oxytocin modulates 
activity in the trigeminal-cervical complex induced by 
meningeal electrical stimulation and that oxytocin recep-
tors are widely represented in the trigeminovascular sys-
tem [67]. Importantly, administration of oxytocin has 
been shown to improve pain in migraine [30, 62].

Moreover, oxytocin PVN projections robustly target 
the mesocorticolimbic system, an abnormal network in 
chronic CH patients [14]. Animal studies have indeed 
demonstrated strong interactions between oxytocin 
and mesolimbic areas such as the amygdala, nucleus 
accumbens, and ventral tegmental area [12, 24, 29, 46]. 
In humans, oxytocin signaling genes are highly co-
expressed with several dopaminergic genes, suggesting 
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fundamental gene pathway interactions between oxy-
tocin and the dopaminergic system [51].

Our findings of robust functional connectivity between 
the anterior–superior hypothalamic subunit and mes-
ocorticolimbic structures (amygdala, hippocampus, 
nucleus accumbens, ventral tegmental area, and medial 
prefrontal cortex) in a large independent dataset of 
healthy participants (HCP 7 T MRI dataset) corroborate 
this notion and suggest, together with the our previous 
observation of anatomical and functional alterations in 
this circuit in patients with cCH [14], that the PVN-mes-
ocorticolimbic route could play a role in the chronic form 
of CH. Future studies should ascertain this possibility. 
Remarkably, the utilization of MRI data from healthy par-
ticipants to infer mechanisms and to enhance the com-
prehension of neuropathological conditions is not novel. 
For instance, a seminal study [36] showed that atrophy 
progression in primary progressive aphasia spread from a 
central area and extended to other regions, based on the 
connectivity of this central area observed in healthy con-
trol participants. This robustly underscores that studying 
healthy participants can enhance comprehension of path-
ological conditions.

Notably, the possible involvement of the preop-
tic area could explain other main clinical features of 
CH, such as the cyclic recurrence of craniofacial pain, 
the nocturnal recurrence and the restless and aggres-
sive behavior during attacks [60], the neuroendocrine 
abnormalities, and the sleep disturbances not related to 
nocturnal attacks [34].

Our study has several strengths that contribute to its 
robustness and reliability. First, we conducted our study 
on the largest MRI dataset of CH patients investigated so 
far (57 patients with cCH and 48 patients with eCH). Sec-
ond, we utilized a fully automated state-of-the-art algo-
rithm for segmenting the hypothalamic subunits, which 
has been extensively validated and shown to outperform 
other segmentation methods. This algorithm exploits a 
deep convolutional neural network, and it was shown to 
be superior to previous ones for unraveling hypothalamic 
structural abnormalities, outperforming multi-atlas seg-
mentation approaches and human inter-rater accuracy 
level, and reaching intra-rater precision [7]. Specifically, 
this algorithm was trained on 37 T1-weighted brain MRI 
images that were manually segmented employing the 
protocol by Makris et  al. [35], which, considering the 
small size of the hypothalamic nuclei, uses only visible 
anatomical landmarks grouping the hypothalamic nuclei 
in 5 subunits. To validate their method, Billot et  al. [7] 
showed that their tool maintained high accuracy perfor-
mances on a low-quality MRI dataset and on a subset of 
675 heterogeneous multi-site brain scans (from ADNI). 
Finally, the authors could replicate the neuropathological 

atrophy of the hypothalamic subunits associated with 
Alzheimer’s disease on 317 ADNI scans. This fully auto-
mated algorithm [7] thus promises precise quantifications 
of the hypothalamic subunits. Third, with reference to 
the optimal solution to correct raw volumes of the struc-
tures of interest for head size, we employed the residuals 
method [55], that can robustly control the effects of sex 
[38, 55]. Furthermore, in addition to reducing the possi-
ble residual confounding effects of age and sex by match-
ing groups for these variables, we checked their effects by 
using them in null models in logistic regression analyses. 
Fourth, we used binary logistic regression models, which 
are robust to violations of normal distribution and homo-
scedasticity assumptions. Fifth, we conducted a thorough 
assessment of possible bias due to lateralization effects. 
This comprehensive evaluation allowed us to exclude 
subunits as possible sites of genuine abnormality and 
provided greater confidence in our results.

Some limitations of our study, however, should be 
noted. First, our findings showed that in patients with 
cCH, the ipsilateral antero-superior subunit was signifi-
cantly larger than the respective contralateral subunit 
only when calculated over the entire sample (i.e., includ-
ing patients with shifting attacks). However, the mean 
volume of the antero-superior ipsilateral subunit was 
always larger than the mean of the contralateral subunit 
also when excluding patients with shifting attacks. Sec-
ond, although we have controlled the likelihood that lith-
ium may be behind the observed increase in the volume 
of the abnormal subunit, the effect of other drugs com-
monly taken by patients with CH (such as antidepres-
sants, corticosteroids, and calcio-antagonists) cannot be 
ruled out with certainty. However, studies investigating 
brain changes induced by corticosteroids and antide-
pressants do not show any effects at hypothalamic level 
[3, 9, 23]. Moreover, eCH patients in-bout phase (who 
do not present abnormalities of the anterior superior 
hypothalamic subunit) and cCH patients did not differ 
for the proportions of patients employing prophylactic 
treatments suggesting that the observed effect (ipsilat-
eral anterior–superior subunit enlargement) may indeed 
be unrelated to drug treatments. Third, lacking a strong 
a priori hypothesis regarding the engagement of specific 
hypothalamic nuclei in CH, we did not gather clinical 
data specifically targeting the anterior–superior hypotha-
lamic subunit.

Conclusions
We showed that CH in the chronic form is charac-
terized by an abnormal increase in the volume of the 
ipsilateral-to-the-pain anterior–superior hypothalamic 
subunit, where PVN and the preoptic area are located. 
Although our study could not ascertain which of the 



Page 15 of 17Ferraro et al. The Journal of Headache and Pain            (2024) 25:7  

two nuclei (i.e., PVN, preoptic area) is altered, converg-
ing animal studies [16, 52, 67] and clinical evidences 
[32, 68] but also the results of Arkink et al. [4] support 
the hypothesis that the PVN could carry out a funda-
mental role in the pathophysiology of CH.

The divergent results for the cCH and eCH patients 
(showing no hypothalamic subunit volumes abnor-
mality) indicate that the enlargement of the ipsilateral 
anterior–superior hypothalamic subunit is linked to the 
chronic form of CH. Moreover, the evidence that these 
volumes in patients with cCH are not correlated with 
the duration of disease chronification or influenced by 
lithium treatment suggests that the observed volumet-
ric difference may represent a biological trait marker of 
cCH patients rather than a marker of disease progres-
sion or Lithium effects. This is robustly supported by 
the correlation between the volume of the identified 
region and the number of headache attacks per days.
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