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Abstract 

Introduction Neuroimaging has revealed that migraine is linked to alterations in both the structure and function 
of the brain. However, the relationship of these changes with aging has not been studied in detail. Here we employ 
the Brain Age framework to analyze migraine, by building a machine‑learning model that predicts age from neu‑
roimaging data. We hypothesize that migraine patients will exhibit an increased Brain Age Gap (the difference 
between the predicted age and the chronological age) compared to healthy participants.

Methods We trained a machine learning model to predict Brain Age from 2,771 T1‑weighted magnetic resonance 
imaging scans of healthy subjects. The processing pipeline included the automatic segmentation of the images, 
the extraction of 1,479 imaging features (both morphological and intensity‑based), harmonization, feature selection 
and training inside a 10‑fold cross‑validation scheme. Separate models based only on morphological and intensity 
features were also trained, and all the Brain Age models were later applied to a discovery cohort composed of 247 
subjects, divided into healthy controls (HC, n=82), episodic migraine (EM, n=91), and chronic migraine patients (CM, 
n=74).

Results CM patients showed an increased Brain Age Gap compared to HC (4.16 vs ‑0.56 years, P=0.01). A smaller 
Brain Age Gap was found for EM patients, not reaching statistical significance (1.21 vs ‑0.56 years, P=0.19). No associa‑
tions were found between the Brain Age Gap and headache or migraine frequency, or duration of the disease. Brain 
imaging features that have previously been associated with migraine were among the main drivers of the differences 
in the predicted age. Also, the separate analysis using only morphological or intensity‑based features revealed differ‑
ent patterns in the Brain Age biomarker in patients with migraine.

Conclusion The brain‑predicted age has shown to be a sensitive biomarker of CM patients and can help reveal dis‑
tinct aging patterns in migraine.
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Introduction
Migraine is a prevalent and chronic condition known 
for its recurrent and debilitating headache episodes. 
Migraine can be classified into two categories based on 
the frequency of headache days per month, namely epi-
sodic migraine (EM) and chronic migraine (CM) [1]. Due 
to the inherent characteristics of migraine and its wide-
spread occurrence, it imposes a substantial burden on 
both individuals and society as a whole [2].

Migraine is associated with changes in the brain. 
Beyond the direct effects (i.e., the experience of pain 
during the ictal phase), neuroimaging studies have dis-
covered alterations in the migrainous brain during the 
interictal phase encompassing both the structural and 
functional levels [3–5]. Differences between EM and 
CM have also been reported [6–8]. Even though the 
structure and function of the brain are also impacted by 
changes due to brain development and aging, the inter-
play between those and changes related to migraine has 
not been explored in depth. Bell et  al. [9], for instance, 
focused on the pediatric age range, finding age- and 
puberty-dependent alterations in the functional con-
nectivity of multiple networks in children with migraine 
using resting-state functional Magnetic Resonance Imag-
ing (fMRI) and showing that brain changes associated 
with migraine begin in infancy and are modulated by 
development. Chong et  al. [10] studied morphological 
changes of EM patients along age and found that patients 
with migraine have age-related thinning of regions com-
pared to the control group. Using fluorodeoxyglucose 
positron emission tomography (FGD-PET), M. Lisicki 
et al. [11] showed that episodic migraine patients exhibit 
specific metabolic brain modifications while aging.

Recently, the so-called Brain Age paradigm has been 
proposed to explore the relationship between aging and 
disease [12]. Using machine learning techniques from 
neuroimaging data, chronological age can be accu-
rately predicted in healthy individuals. After training a 
Brain Age model, the difference between an individual’s 
chronological age and the age predicted by the Brain Age 
model is usually referred to as “Brain Age Gap”, “Brain 
Age Gap Estimate” or “brain-predicted age difference” 
(brain-PAD), and has been proposed as an age-adjusted 
index of structural brain health. Research has shown the 
Brain Age paradigm to be sensitive to many neurologi-
cal, psychiatric, and metabolic disorders, showing a posi-
tive Brain Age Gap, higher age compared- to the healthy 
brain, in disorders such as Alzheimer’s, schizophrenia, 
and type II diabetes, among others [13–15]. Conversely, 
protective sociological and lifestyle factors including 
years of education, physical exercise, playing music, or 
meditation have been associated with a negative Brain 
Age Gap [16–18]. An increased predicted Brain Age has 

even been associated with higher allostatic load and ele-
vated overall mortality risk [19].

Even though other pain-related conditions have been 
studied using the Brain Age paradigm [20–23], to the 
best of our knowledge, migraine has not been explored 
from this perspective.

In this work, the Brain Age framework was employed 
to investigate migraine on a dataset composed of struc-
tural T1-weighted (T1w) MRI from EM and CM patients, 
together with normal controls. We hypothesized that 
migraine patients will exhibit an increased Brain Age 
Gap compared to healthy participants. Furthermore, we 
aimed to detect possible associations between the Brain 
Age Gap and clinical characteristics in the patient groups 
exploring the role of different imaging features.

Materials and methods
Developing a robust Brain Age model involves sev-
eral crucial steps. Firstly, it is imperative to assemble a 
diverse, broad, and representative dataset that encom-
passes neuroimaging data alongside corresponding 
chronological ages. The size of the dataset plays a signifi-
cant role, as a larger dataset enables greater precision and 
generalizability in the final model. Subsequently, feature 
extraction is performed to capture pertinent information 
from the neuroimaging data. This process ensures that 
only informative and discriminative features are included 
in the model.

Once the features have been extracted, an appropriate 
machine-learning algorithm is selected for age predic-
tion based on the neuroimaging data. Common choices 
include support vector machines or neural networks. The 
chosen algorithm is then trained using the dataset, and 
techniques such as regularization, cross-validation, and 
hyperparameter tuning are employed to optimize perfor-
mance and prevent overfitting. The trained model is next 
evaluated using a separate dataset, employing metrics 
such as mean absolute error (MAE) or correlation coef-
ficients to assess accuracy and generalization capabilities. 
This evaluation step provides valuable insights into the 
model’s performance and its ability to accurately estimate 
Brain Age.

Finally, the trained Brain Age model can be applied to 
new and unseen neuroimaging data. In our case, we apply 
it to a dataset composed of healthy controls, patients with 
episodic migraine, and patients with chronic migraine.

Brain age model
To create and evaluate our age prediction models, we 
compiled a dataset (hereinafter referred to as Model Cre-
ation Dataset) consisting of 2,771 structural T1w MRI 
scans from different studies and databases that were 
publicly available. These include: the Dallas Lifespan 
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Brain Study (DLBS) [24]; the Consortium for Reliability 
and Reproducibility dataset (CoRR) [25]; the Neurocog-
nitive aging data release (NeuroCog) [26]; The OASIS-1 
dataset [27]; the Southwest University Adult Lifespan 
Dataset (SALD) [28]; the Information eXtraction from 
Images dataset (IXI) [29]; and the CamCAN repository 
(available at http:// www. mrc- cbu. cam. ac. uk/ datas ets/ 
camcan/) [30, 31]. In addition to these, we included a 
set of healthy adults from the Laboratorio de Procesado 
de Imagen (LPI), our own institution. We selected only 
participants in good health and within the age range of 
18 to 60 years. Individuals who presented neurological 
or psychological diagnoses or cognitive impairments 
were eliminated from the OASIS-1 and CoRR databases. 
Table 1 depicts the basic features of the Model Creation 
Dataset. Supplementary file 2 offers a detailed descrip-
tion of the included acquisitions for each database.

From the T1w images, FastSurfer [32] was employed 
to extract a total of 1,479 features. Fastsurfer uses Deep 
Learning to perform brain segmentation based on the 
Desikan-Killiany atlas [33, 34]. Two types of features 
were extracted:

• 624 morphological features, including whole brain 
features, the volume of cortical and subcortical gray 
matter regions and white matter regions from the 
atlas, as well as the surface, thickness and curva-
ture of the cortical regions. This feature set will be 
referred to as Morphological Feature Set.

• 855 intensity-based features extracted from the same 
regions. This feature set will be referred to as Inten-
sity Feature Set.

Together, all 1,479 features make up the Combined Fea-
ture Set. The three feature sets obtained using this proce-
dure were the basis for further analysis.

To ensure their quality, segmentations were manually 
inspected. In Supplementary Table  1, Supplementary 
Fig. 1 and Supplementary Table 2, features and regions of 
interest are covered in greater detail.

MRI acquisitions obtained at different sites and/or 
using different protocols can differ in their intensity 
levels, which can introduce a bias in the Brain Age-pre-
dicting models. In order to cope with this problem, we 
used ComBat [35, 36] to harmonize the features from the 
Intensity Feature Set and the Combined Feature Set, using 
age, sex, and estimated total intracranial volume (eTIV) 
as covariates.

Afterwards, the cases were randomly divided into an 
8:1:1 ratio for training, validation, and testing. We con-
ducted a 10-fold cross-validation training procedure over 
the harmonized features to predict age. We flattened 
outliers of each feature, defined as values on the 97.5th 
or 2.5th percentile. In addition, each characteristic was 
adjusted to the range (-1, 1) using min-max normaliza-
tion. Each fold underwent feature selection, defining 
three sets of 20, 30, and 40 characteristics. The selec-
tion of features was accomplished in two steps. Initially, 
a filter was used to choose the first decile features based 
on the mutual information between features and age in 
the training set. Next, the final features were chosen by 
employing a forward feature selection approach with 
gaussian mixture models to optimize the mutual infor-
mation between a subset of features and age [37].

As regressors, support vector regressor (SVR), random 
forest (RF), and a multilayer perceptron (MLP) were eval-
uated. Figure 1 depicts the process followed. By combin-
ing these three regressors with distinct feature sets of 20, 
30, and 40 characteristics for each fold, a total of 90 mod-
els were trained.

Predictions were obtained for the validation and test 
set for each fold. Validation results were used to select the 
Brain Age model to be selected as the best-performing, 
while test results were exclusively employed to report the 
accuracy of the Brain Age model on the Model Creation 
Dataset.

We are aware that Brain Age models suffer from regres-
sion dilution, which causes bias in Brain Age predictions. 
Therefore, in order to avoid possible spurious associa-
tions, a correction for this effect was applied [38, 39]. A 
linear regression was fitted between the real age and vali-
dation results of each of the regressors of the ensemble. 
The intercept (α) and slope (β) of each fit were then used 
to correct the predictions obtained for the studied groups 
following the equation:

(1)
CorrectedPredictedAge = (Predicted Age− β)/α

Table 1 Summary characteristics of the datasets used in the 
Model Creation Dataset, sorted by median age

Dataset No. Cases No. Females (%) Age Range 
(Median)

CoRR 935 479 (51.2) 18‑60 (22)

NeuroCog 190 107 (56.3) 18‑60 (22)

LPI 91 33 (36.3) 18‑53 (24)

OASIS-1 218 126 (57.8) 18‑60 (25)

IXI 384 203 (52.9) 20‑60 (39)

DLBS 174 112 (64.4) 21‑60 (39)

SALD 393 249 (63.3) 19‑60 (40)

CamCan 386 198 (51.2) 18‑60 (42)

Model Creation 
Dataset

2771 1507 (54.4) 18‑60 (28)

http://www.mrc-cbu.cam.ac.uk/datasets/camcan/
http://www.mrc-cbu.cam.ac.uk/datasets/camcan/
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This approach was repeated for each of the aforemen-
tioned feature sets. The training procedure was per-
formed using the scikit-learn Python library for machine 
learning [40]. The SVR and RF models were imported 
from the library while the MLP was implemented using 
PyTorch [41]. Details of the MLP implementation and the 
hyperparameters for each model are described in Supple-
mentary Table 3.

Participants
A total of 391 subjects were included in this study, on 
which the Brain Age model previously described was 
applied. First, we employed healthy subjects from the 
Nathan Kline Institute - Rockland Sample (NKI-RS) data-
set [42], for the purpose of external validation (n = 144). 
Next, and in order to study the influence of migraine on 
Brain Age, we employed a dataset composed of healthy 
controls (HC, n=82), EM (n=91), and CM patients 
(n=74). This dataset will be hereinafter referred to as 
Application Dataset.

Patients were recruited from the outpatient headache 
unit at the Hospital Clínico Universitario de Vallado-
lid (Spain), a public tertiary care institution that accepts 
patients from both secondary care and primary care. Inclu-
sion criteria were: a) migraine diagnosis using the third 
edition of the International Classification of Headache 
Disorders (ICHD-3) beta and ICHD-3 criteria [1, 43]; b) a 
stable clinical state in the last six months; and c) expressed 

willingness to partake in the study, coupled with the vol-
untary signing of the informed consent document. We 
excluded patients with the following conditions: a) high-
frequency episodic migraine, with 10 to 14 headache days 
per month; b) other painful conditions; c) known major 
psychiatric diseases (described as anamnesis or the pres-
ence of depression or anxiety in the Hospital Anxiety and 
Depression Scale [44]); d) other neurological diseases; e) 
drug or substance abuse; and f) pregnancy. At the time 
of inclusion, no preventive treatment was given to the 
patients. Participants were requested to complete a head-
ache diary and were diagnosed with EM if they experienced 
10 headache days per month or less and CM if they met the 
ICHD-3 criteria.

Age- and sex-matched HC were recruited through 
hospital and university colleagues, as well as ads at these 
institutions, using convenience sampling and snow-
ball sampling. No HC were included if they had a cur-
rent or previous history of migraine, or if they had any 
other neurological or mental disorder following the same 
exclusion criteria as for migraine patients.

We gathered sociodemographic and clinical data from 
all patients, including migraine illness duration (years) 
and headache and migraine frequency (days per month).

The study was approved by Hospital Clínico Universi-
tario de Valladolid’s local Ethics Committee (PI: 14- 197). 
All participants read and signed a written consent form 
before their participation.

Fig. 1 Comprehensive illustration of the methodologies employed for the training of the Brain Age models and the generation of brain‑predicted 
ages. Model Creation shows the steps taken to train the Brain Age model on the Model Creation Dataset and choose the final model applied 
on the Application Dataset: a Image processing includes Fastsurfer for brain segmentation and extraction of intensity and morphological features, 
thus building three feature sets: the Morphological Feature Set, Intensity Feature Set and the Combined Feature Set. For each of these feature sets, 
a feature selection procedure is performed in a 10‑fold cross‑validation scheme creating feature sets of 20, 30 and 40 features to feed the machine 
learning models (SVR, RF and MLP) for each fold. b Validation is performed to select the best combination of feature set size and machine learning 
technique. c Test on the Model Creation Dataset to assess the performance of the Brain Age prediction model. Model Application depicts the use 
of the chosen model on the patient and healthy groups. Brain Age Gap is calculated as the difference between the predicted and the actual age. 
Differences in Brain Age Gap are then analyzed
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Image acquisition and processing
High-resolution 3D T1w MRI data were acquired for all 
subjects using a Philips Achieva 3T MRI unit (Philips 
Healthcare, Best, the Netherlands) with a 32-channel head 
coil in the MRI facility at the Universidad de Valladolid 
(Spain). Acquisition parameters were the following: Turbo 
Field Echo (TFE) sequence, repetition time (TR) = 8.1 ms, 
echo time (TE) = 3.7 ms, flip angle=8o , 256× 256 matrix 
size, 1× 1× 1 mm3 of spatial resolution, and 160 sagit-
tal slices covering the whole brain. Image acquisitions for 
migraine patients were performed during interictal periods 
(defined as at least 24 hours from the last migraine attack). 
Details about the acquisition protocols of each public data-
set are described in Supplementary Table 4. If more infor-
mation is required, further details can be found in each 
portal of the databases used.

Following the image acquisition, image segmentation, 
feature extraction and harmonization were also performed 
on the Application Dataset as described for the creation of 
the Brain Age model. Next, Brain Age was estimated for 
each participant, including correction from the regression 
dilution. Since we conducted a 10-fold cross-validation 
for the training, validation and testing of the Brain Age 
model, an ensemble formed with the average result of the 
trained model from each fold was used to obtain the final 
prediction. Finally, the Brain Age Gap was calculated as 
the difference between the corrected predicted age and the 
chronological age of each individual.

Model interpretation
The significance of each imaging feature in the Brain Age 
estimation was evaluated using SHapley Additive exPlana-
tions (SHAP) [45]. SHAP is a game-theory-based model-
agnostic explanation method for machine learning models 
that evaluates the contribution of each feature to a given 
prediction. By employing this approach, a group-level com-
parison of distinct brain imaging features can be conducted 
to determine their significant contribution to age predic-
tion. Additionally, the evaluation of the influence of indi-
vidual features on each participant’s Brain Age prediction 
is made possible, as exemplified in the study conducted by 
Ballester et al. [46].

The SHAP value for a particular feature for a specific pre-
diction can be interpreted as the difference in the predic-
tion when that feature is omitted from the model. SHAP 
values reinterpret complex models as a linear function:

where z’ is a simplified version of the input features of the 
model, φ0 is a reference value of the model (in our case is 
a value close to the average age of the training data), and 
φi , the attribute effect of the feature which deviates the 

(2)g(z′) = φ0 + φiz
′
i

prediction from the reference value. In a database with N 
participants and M features, for example, SHAP gener-
ates an N ×M matrix, where each value represents the 
contribution of feature m to the prediction of participant 
n.

We calculated the SHAP value for each subject for 
a deeper understanding of the regressors. Since many 
features are repeated across the different regressors, we 
summed up the contribution of repeated features into 
a single value. The final matrix was divided by 10 since 
our ensemble model is the average of the results of the 
10 regressors trained during the 10-fold cross-validation.

Once we had the final matrix, we aggregated the values 
for each of the groups considered (HC, EM and CM) by 
summing up the absolute values of the matrix along the 
participant’s axis. The best 15 features in terms of their 
absolute contribution for each group were selected for 
each model of the ensemble. Unique features among the 
three groups studied were selected as the most informa-
tive features.

Statistical analysis
The performance evaluation of the Brain Age models was 
conducted using two metrics: the MAE and Pearson’s 
correlation coefficient (r). The MAE was calculated as 
the average of the absolute values of the residuals, which 
were obtained by subtracting the predicted age from the 
actual age for each individual in the group. The MAE 
serves as a comprehensive measure of the prediction 
error across the entire group, with lower values indicat-
ing a better fit. On the other hand, Pearson’s correlation 
coefficient measures the strength and direction of the lin-
ear relationship between the predicted ages and the real 
ages. Higher values of r indicate a better fit of the model. 
The specific formulas for these metrics can be found in 
equations (3) and (4). Further exploration of these perfor-
mance metrics can be found in the work from de Lange 
et al. [39].

We assessed the normality and homogeneity of vari-
ance for age and duration of migraine in the Applica-
tion Dataset using the Kolmogorov-Smirnov test and 
Levene’s test for equality of variances, respectively. If 
the null hypothesis was not rejected in both tests, we 
performed a one-way analysis of variance (ANOVA) 
to determine significant differences in the ages of the 

(3)MAE =
1

N

N
∑

i=1

|ỹi − yi|

(4)r =

∑

(yi − ȳ)(ŷi − ¯̂y)
√

∑

(yi − ȳ)2
∑

(ŷi − ¯̂y)2
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three groups. Gender-significant differences were iden-
tified using a chi-square test. For comparing clinical 
characteristics between migraine patients (i.e., dura-
tion of migraine history in years for both groups of 
patients), we used a two-tailed unpaired t-test if the 
null hypothesis was not rejected by the Kolmogorov-
Smirnov; alternatively, we used the Mann-Whitney U 
test.

An Analysis of Covariance (ANCOVA) was con-
ducted on the Brain Age Gap outcomes across the 
three groups, incorporating eTIV and sex as covari-
ates. Upon ascertaining that the p-value suggested 
a need for further investigation, pairwise compari-
sons between the groups were carried out, keeping 
the same covariates. The analysis was made using all 
subjects followed by sex-specific comparisons. To ver-
ify that the Brain Age Gap calculated for each group 
was approximately normal and that the variances 
between groups were comparable, we performed the 
Kolmogorov-Smirnov test and the Levene test. In the 
case of a negative Levene’s test, we verified that the 
variance ratio did not exceed 2 [47]. We reset the P 
value threshold correcting for multiple comparisons 
using the Bonferroni correction method (P threshold 
= 0.0167). To conduct a more detailed examination 
of the variations among the groups, we computed the 
Cohen’s d statistic.

Regarding the model interpretation, We conducted a 
Kruskal-Wallis test on the SHAP values obtained for each 
of the highly important features of each regressor trained 
to analyze differences in feature importance among the 
studied groups. A non-parametric test was chosen due 
to the non-normality of the SHAP values. To account 
for multiple comparisons, we applied the Benjamini-
Hochberg correction method. We performed pairwise 

comparisons using the post-hoc Connover-Iman test, 
correcting its p-values for multiple comparisons using 
the Benjamini-Hochberg method if the Kruskal-Wallis 
Test was significant.

To deepen our understanding of how migraines influ-
ence brain health, we examined the role of brain vol-
ume in linking the frequency of headaches in migraine 
patients to the Brain Age Gap. This type of analysis, 
known as mediation analysis, is a standard method in 
the realm of neuroimaging [48]. Utilizing a single-tier, 
three-variable mediation model, we sought to discover 
if segmented brain volume could serve as a mediator 
(M) between headache frequency (independent variable, 
X) and the Brain Age Gap (dependent variable, Y). We 
adjusted for potential confounding factors like age and 
sex in the model. To assess the validity of the mediation 
effect, we employed a bias-corrected bootstrap tech-
nique, using 10,000 random samples. For a more nuanced 
understanding, we looked at these relationships both 
across the general population of migraine patients and 
within individual subgroups.

Finally, we computed the Pearson’s correlation coef-
ficient to assess the association between the Brain Age 
Gap and the clinical characteristics of the migraine 
groups. Corrections for multiple comparisons were 
made using the Benjamini-Hochberg method. We also 
explored the relationship between the imaging features 
that were selected as highly important during the SHAP 
analysis and these clinical characteristics, making addi-
tional adjustments for multiple comparisons using the 
Benjamini-Hochberg approach. Partial correlation analy-
ses were performed to control for age as a confounding 
variable given its potential influence on the duration of 
migraine and chronic migraine. All statistical procedures 
were executed in Python.

Table 2 Demographic and clinical characteristics for the Application Dataset and the External Validation Dataset. Not all patients 
completed the headache diary. Complete data was available from 87 EM patients and 72 CM patients

Data expressed as mean ± SD
a Chi‑square test
b ANOVA
c Two‑tailed, unpaired Student t test
d Mann‑Whitney U test

NKI-RS (n=144) HC (n=82) EM (n=91) CM (n=74) Statistical Test

Woman N◦ . (%) 89 (61.8 %) 68 (82.9 %) 75 (82.4 %) 68 (91.9 %) sex ‑ χ2 = 3.56, P = 0.17a  

Age, y 35.5 ± 12.0 35.7 ± 12.0 36.4 ± 9.9 37.8 ± 9.7 age ‑ ANOVA = 0.86, P = 0.43b

EM n = 87; CM n = 72;

     Duration of migraine history, y 14.1 ± 10.7 19.8 ± 10.7 t = ‑3.32, P = 0.001c 

     Duration of Chronic migraine, mo 28.4 ± 35.3

     Headache frequency d/mo 3.5 ± 2.1 23.5 ± 6.0 U = 66, P < 0.001d

     Migraine frequency d/mo 3.6 ± 2.0 13.6 ± 6.8 U = 225.5, P < 0.001d
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Results
Demographics
There were no significant differences between the groups 
(HC, EM and CM) in the Application Dataset regarding 
age or sex. Table  2 shows the demographic and clinical 
characteristics of the dataset, while Fig. 2 shows the age 
distribution of the subjects, together with those in the 
Model Creation Dataset.

Performance of the Brain Age model
Table 3 provides a summary of the validation results for 
the models tested with the three feature sets studied after 
age bias correction. Results before the bias correction 
can be found in Supplementary Table  5. The ensemble 
model formed by MLPs with a set of 40 selected features 
provided the greatest performance among the evaluated 
models in all feature sets and was therefore selected to 
perform all the Brain Age predictions whose results are 
described next.

For the test data, training on the Model Creation Data-
set, the Brain Age model working with the Combined 
Feature Set obtained an MAE and r of 5.95 years and 

0.85. On the External Validation Dataset (NKI-RS) [42], 
this same model yielded an MAE and Pearson’s correla-
tion of 6.19 years and 0.83, respectively. For the Applica-
tion Dataset, we obtained a MAE and r of 6.26 years and 
0.84 (HC group). With regard to the Brain Age model 
working only with the Morphological Feature Set, its 
performance was MAE = 7.13 years and r = 0.80 on the 
Model Creation Dataset. This model obtained an MAE 
= 6.92 years and r = 0.82 on the NKI-RS dataset and 
MAE = 7.83 years and r = 0.74 on the HC group of the 
Application Dataset. Finally, the Brain Age model oper-
ating solely with the Intensity Feature Set yielded MAE = 
8.19 years and r = 0.78 on the Model Creation Dataset, 
an MAE = 8.63 years and r = 0.73 on the NKI-RS dataset 
and MAE = 9.27 and years r = 0.64 for the HC group of 
the Application Dataset. Results on the NKI-RS dataset 
are further detailed at Supplementary Fig. 2.

Brain Age Gap in migraine
The outcome of the ANCOVA featuring three levels 
yielded a p-value of 0.053, suggesting potential significant 

Fig. 2 Age distributions of studies in the Model Creation Dataset and the Application Dataset, ordered by median age
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differences in the pairwise comparisons. Using the Com-
bined Feature Set, CM patients exhibited a statistically 
significant increased Brain Age Gap (average +4.16 vs 
-0.52 years, P = 0.010) compared to HC. EM patients 
showed an intermediate Brain Age Gap (average +1.21 
years), and neither comparisons with HC nor CM yielded 
statistical significance. We computed Cohen’s d for the 
Brain Age Gap outcome of the combined regressor and 
obtained the following results. For the EM vs HC groups, 
it yielded 0.19; for CM vs HC, the value was 0.49; and 
for CM vs EM, the result was 0.29. This shows a mod-
erate difference between the Brain Age Gap of CM vs 
HC. Figure  3 graphically depicts these results, together 
with scatterplots showing the brain-predicted age and 
the chronological age in both the Model Creation Data-
set and the Application Dataset. Details of the ANCOVA 
results for each regressor can be found at Supplementary 
Tables 6, 7 and 8.

When only employing the Morphological Feature Set, 
CM showed an increased Brain Age Gap with respect to 
both HC and EM (+7.54 vs 3.15 and 3.56 years, respec-
tively), although these differences were not statistically 
significant (P = 0.07 and P = 0.17). Interestingly, the aver-
age Brain Age Gap for HC and EM were very similar in 
this case. Cohen’s d yielded a small difference between 
the EM and HC groups (0.04) and a modarate difference 
between the CM and HC groups (0.42) and the CM and 
EM group (0.39).

Finally, when only employing the Intensity Feature 
Set, CM again showed an increased Brain Age Gap with 
respect to HC and EM, although differences were not sta-
tistically significant in this case either. Cohen’s d yielded 
0.21 between EM and HC, 0.33 between CM and HC 
and 0.12 between the CM and EM group. Figure  3 and 
Table 4 depict these results.

The separate analysis for female subjects suggests 
that the trends found for the whole cohort are main-
tained for the female group. No conclusions should be 
drawn, however, for the analysis of the male subjects 
given the small size of that subsample. Results of these 
analyses are provided in Supplementary Tables  9, 10 
and Supplementary Fig. 3.

Model interpretation
Following the SHAP procedure described in Materials 
and methods, 16 features from the regressor trained on 
the Combined Feature Set were selected. Among them, 
SHAP values differed significantly between CM patients 
and HC for the left hemisphere lateral orbitofrontal cor-
tex gray matter volume, left hemisphere superior frontal 
gyrus gray matter volume and the left hemisphere Insula 
average thickness (p < 0.001 for all cases). For the first 
two features, the left hemisphere lateral orbitofrontal 
cortex gray matter volume and the left hemisphere supe-
rior frontal gyrus gray matter volume, significant differ-
ences were also found in the SHAP values between EM 
and CM (p < 0.01 in both cases). No other significant 
differences were found for the remaining characteristics 
among the studied groups. These results are graphically 
depicted in Fig. 4.

Regarding the regressor trained on the Morphologi-
cal Feature Set, 17 features were selected. Among them, 
nine features were significantly different between HC 
and CM, and ten, (the previous one plus one more) were 
significantly different for the EM-CM comparison. These 
are: the volume of the right Putamen (HC-CM p < 0.05, 
EM-CM p < 0.01), the volume of the superior frontal 
gyrus of the left hemisphere (HC-CM p < 0.001, EM-CM 
p < 0.01), the volume of the lateral orbitofrontal cortex of 

Table 3 Validation results for the three regressors tested. Results are given as the average and the standard deviation of the values 
obtained from each fold of the 10‑fold cross‑validation scheme after age bias correction. The values in bold show the combination 
with the best result

SVR RF MLP

MAE r MAE r MAE r

Combined Feature Set 20 features 7.40 ± 0.50 0.82 ± 0.02 6.59 ± 0.51 0.84 ± 0.02 5.99 ± 0.55 0.86 ± 0.02

30 features 7.21 ± 0.50 0.83 ± 0.02 6.59 ± 0.48 0.84 ± 0.02 5.81 ± 0.47 0.86 ± 0.02

40 features 7.10 ± 0.42 0.83 ± 0.02 6.58 ± 0.48 0.84 ± 0.02 5.79 ± 0.38 0.87 ± 0.01
Morphological Feature Set 20 features 8.49 ± 0.66 0.78 ± 0.02 8.75 ± 1.05 0.76 ± 0.03 7.46 ± 0.85 0.80 ± 0.02

30 features 8.18 ± 0.65 0.79 ± 0.02 8.62 ± 0.93 0.77 ± 0.03 7.31 ± 0.76 0.81 ± 0.02

40 features 7.96 ± 0.55 0.80 ± 0.02 8.50 ± 0.74 0.77 ± 0.02 7.13 ± 0.52 0.81 ± 0.02
Intensity Feature Set 20 features 9.25 ± 0.67 0.75 ± 0.02 9.12 ± 0.68 0.75 ± 0.02 8.39 ± 0.76 0.77 ± 0.02

30 features 9.15 ± 0.75 0.75 ± 0.02 9.10 ± 0.75 0.76 ± 0.02 8.33 ± 0.93 0.78 ± 0.03

40 features 9.09 ± 0.65 0.76 ± 0.02 9.19 ± 0.77 0.75 ± 0.02 8.24 ± 0.68 0.78 ± 0.02
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the left hemisphere (HC-CM p < 0.001, EM-CM < 0.01), 
the volume of the subcortical gray matter (EM-CM p < 
0.01), the volume of the superior frontal gyrus of the right 
hemisphere (HC-CM p < 0.001, EM-CM p < 0.01), the 
total gray matter volume (HC-CM p < 0.001, EM-CM p 
< 0.001), the volume of the middle temporal gyrus of the 
right hemisphere (HC-CM p < 0.01, EM-CM p < 0.001), 
the folding index of the rostral middle frontal gyrus of the 
right hemisphere (HC-CM p < 0.001, EM-CM p < 0.01), 
the volume of the supramarginal gyrus of the right hemi-
sphere (HC-CM p < 0.01, EM-CM p < 0.05) and the vol-
ume of the insula of the right hemisphere (HC-CM p < 
0.001, EM-CM p < 0.001). These features and P values are 
also shown in Fig. 4.

Finally, no features from the regressor trained on the 
Intensity Feature Set (among the 17 that were selected) 
showed significant differences after the Kruskal-Wallis 
test. Feature importance for each ensemble studied are 
depicted Supplementary Figs. 4, 5, and 6.

Relation between Brain Age Gap, imaging features 
and clinical characteristics
Employing the regressor trained on the Combined Fea-
ture Set, and both considering EM and CM separately 
or together, we found no significant association between 
the Brain Age Gap and headache frequency (CM - p = 
0.89, EM - p = 0.72, both - p = 0.30), migraine frequency 
(CM - p = 0.71, EM - p = 0.62, both - p = 0.62), migraine 

Fig. 3 The results of each of the regressors build are shown. The MLPs selecting 40 features demonstrated the best results in validation for all 
the feature sets. For each trained regressor on every feature set: I) Ensemble MLPs result in the test set of each fold of Model Creation Dataset. II) 
Distribution of the Brain Age Gap values obtained for each of the studied groups. III) Brain Age Gap for the three groups. Statistical significance 
is denoted by an asterisk (*) to indicate significant findings
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duration in years (CM - p = 0.52, EM - p = 0.52, both 
- p = 0.52) or chronic migraine duration (p = 0.32). No 
significant associations were found either when consider-
ing the regressors trained on the Morphological Feature 
Set or the Intensity Feature Set. Results are shown in Sup-
plementary Figs. 7, 8 and 9. Additionally, we analyzed the 
Pearson’s correlation between key important features and 
various clinical traits. To do this, we combined the fea-
tures selected for the three predictive models and then 
identified unique features, totaling 40 in all. We found 
no statistically significant correlations. Results for this 
experiment are shown in Supplementary Fig. 10.

The mediation analysis results showed that the seg-
mented brain volume mediates the relationship between 
headache frequency and Brain Age Gap when taking 
both groups as a whole. Detailed results can be seen in 
Supplementary Fig. 11.

Discussion
In this study, we first applied the Brain Age paradigm 
to migraine patients using a machine learning model 
trained on brain T1w MRI data. Several important find-
ings emerged from this investigation: First, CM patients 
had a statistically significant increase in predicted Brain 
Age compared to HC, whereas EM patients showed a 
nonsignificant increase. Second, different behaviors seem 
to arise when separately considering morphological and 
intensity-based features. Third, no associations were 
found between clinical characteristics such as headache 
frequency or disease duration and the Brain Age Gap or 
the imaging features that drive its prediction.

In the existing body of literature pertaining to the pre-
diction of Brain Age, multiple methodologies have been 
employed to construct machine learning models. These 
methodologies range from feature-based approaches 
to advanced Deep Learning techniques [12, 19, 49]. 

Although Deep Learning techniques have demonstrated 
superior accuracy compared to feature-based methods - 
achieving an MAE as low as 2 to 3 years [50] as opposed 
to feature-based methods which infrequently reach an 
MAE below 4 years for the same age range and usually 
remain between an MAE of 5 to 6 years [51] - they are 
constrained by their ’black box’ nature and requirements 
for large data sets. Given that our study prioritized inter-
pretability, we opted for a feature-based approach. We 
conducted a comparative analysis between three com-
monly employed machine learning algorithms: SVR, RF, 
and MLP. The MLP algorithm was selected for its supe-
rior performance metrics. During the validation phase, 
the MLP outperformed both the SVR and RF, achiev-
ing an MAE of 5.79 and a Pearson’s correlation coeffi-
cient of r=0.87. These results are consistent with similar 
approaches cited in the existing literature [51].

The Brain Age prediction model that was developed 
was later evaluated in three different contexts: first, 
using data from the Model Creation Dataset (a 10-fold 
cross-validation scheme was employed here). Second, 
data from the NKI-RS cohort was employed as an exter-
nal validation dataset to ensure its generalization capa-
bilities. Finally, the Brain Age model was evaluated on 
healthy subjects from the Application Dataset, in order 
to assess the accuracy of the model on the dataset that 
is relevant for our research question. Our results illus-
trate the model’s robust generalization capabilities as 
well as the efficacy of the feature harmonization method 
employed.

Combining different types of features, as we did with 
the Combined Feature Set, is a prevalent technique in 
computer vision [52–54]. The combination of these fea-
tures is typically accompanied by an enhancement in the 
performance of the employed machine learning mod-
els [55], as is the case with our study. This is typically 

Table 4 ANCOVA results for Brain Age Gap calculated for each regressor trained. Normality and equality of variances were tested 
before applying the ANCOVA. Sex and eTIV were included as covariates. The η2p effect sizes were small ( η2p < 0.06 ) for all comparisons. 
Statistically significant elements are shown in bold

ANCOVA HC-EM ANCOVA HC-CM ANCOVA EM-CM

Combined Feature Set F-value 1.734 6.796 1.110

Effect size (η2p) 0.012 0.043 0.007

p-value 0.190 0.010 0.294

Morphological Feature Set F-value 0.102 3.237 1.924

Effect size (η2p) < 0.001 0.021 0.012

p-value 0.750 0.074 0.167

Intensity Feature Set F-value 1.802 4.094 0.336

Effect size (η2p) 0.011 0.026 0.002

p-value 0.181 0.045 0.563
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explained by the lack of correlation between distinct fea-
ture spaces. The separate results obtained for the Brain 
Age models trained using the Morphological Feature Set 
and the Intensity Feature Set allow us to gain more insight 
into the behavior of CM and EM patients since they offer 
complementary viewpoints of the nature of the Brain 
Age Gap in migraine. When employing the Morphologi-
cal Feature Set, there is virtually no difference between 
HC and EM, whereas CM shows an increased Brain Age 
Gap that appears to vanish for older ages (see Fig. 3 (b) 
II). Although further investigation is required to corrobo-
rate this, it suggests that morphological changes in the 
brain that are associated with CM are more prominent 

at younger ages, but aging then absorbs these alterations. 
Conversely, the behavior of the Brain Age Gap when 
using the Intensity Feature Set seems more stable across 
ages (see Fig. 3 (c) II).

The interpretation of the Brain Age predicting model 
through SHAP allows us to better understand which 
brain imaging features mostly drive the Brain Age pre-
diction, and which are responsible for the differences 
found. For the regressor trained on the Combined Fea-
ture Set, we identified a total of 16 features that highly 
influenced the prediction of the regressor across the 
studied groups. These characteristics primarily per-
tain to the frontal cortex (8), which is expected since 

Fig. 4 P‑values derived from the Kruskal‑Wallis test and the post‑hoc Connover‑Iman test for each of the most significant characteristics chosen 
for each regressor. Features are ranked from highest importance in the HC group to lower, left‑right. a A total of 16 unique features were selected 
for the combined regressor, from which 3 demonstrated significant differences in the pairwise comparisons. b A total of 17 unique features 
were chosen for the regressor trained on the Morphological Feature Set. Up to 10 features demonstrated significant differences in importance 
between groups. c shows the 17 most significant characteristics for the regressor trained on the Intensity Feature Set. No significant differences were 
found during the Kruskal‑Wallis test
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features related to the frontal and temporal cortices are 
common in Brain Age models due to their generalized 
thinning as part of the normal process of aging [56]. Fea-
tures related to the size of the ventricles are also com-
mon in Brain Age models, but not so much in our case 
(only two features). This is probably related to the fact 
that the increase in the volume of the ventricles is more 
pronounced after the sixth decade of life [57], while the 
subjects employed in our study ranged between 18 and 
60 years of age. Ten out of the 16 most significant fea-
tures were intensity-based, likely suggesting changes in 
the tissue microstructure [58].

The SHAP values of three of the brain imaging features 
found to be most relevant for the Brain Age estimation 
showed significant differences between CM patients 
and HC for the regressor trained on the Combined Fea-
ture Set. Additionally, regarding the regressor trained 
on the Morphological Feature Set, significant differences 
between CM and HC were found in the SHAP values of 
nine additional features (and nine more features in the 
comparison between EM and HC). Brain regions related 
to the identified features have been shown to differ mor-
phologically [6], connectivity-wise [3, 59, 60], or both 
between HC and CM patients and between HC and EM 
patients. These regions are involved in complex cogni-
tive functions such as information integration or work-
ing memory [61, 62] and their alteration may be related 
to the cognitive changes and other alterations associated 
with migraine [63, 64].

The reasons why migraine is associated with an 
increase in Brain Age can only be speculated at this 
point. Indeed, structural changes in the brain of migraine 
patients have been found from T1w MRI data [6], and 
some hypotheses have arisen such as the loss of cortical 
volume due to the damage induced by repetitive migraine 
attacks. The Brain Age paradigm condenses the changes 
that are associated with the aging of a healthy brain into 
one single number, the predicted Brain Age, and thus the 
same mechanisms can be hypothesized. This is in fact 
what our mediation analysis suggests. It seems that an 
increase in headache frequency is related to a decrease 
in brain volume which in turn might be related to an 
increased Brain Age Gap.

We found no correlations between the Brain Age Gap 
in migraine patients and clinical characteristics such 
as the frequency of headaches or migraine attacks or 
the duration of the disease. If the increased Brain Age 
Gap found in (chronic) migraine patients is a result of 
the damage produced by migraine attacks, one should 
expect a positive correlation between the Brain Age 
Gap and those clinical characteristics. Some other 
studies have also reported no correlation between 
the Brain Age Gap and illness duration for some 

pathologies [65], possibly implying that the alterations 
that cause an increase in the Brain Age primarily occur 
in the first stages of the disease. As migraine often 
ameliorates with age [66], the most severe impacts 
may occur early in the disease’s course, as suggested 
by our data. Alternatively, it is possible that the Brain 
Age Gap found in migraine patients does not actually 
reflect the effects of this condition, but rather a pre-
disposition to suffer migraine that exists even before 
migraine appears. Unfortunately, the cross-sectional 
nature of our study prevents us from elucidating this 
question, and longitudinal analyses are needed to fur-
ther investigate this issue. It is also important to notice 
that frequency has already been accounted for in the 
categorization of CM versus EM, which could conceal 
this correlation.

The interaction between migraine and brain aging has 
been studied before, although not from the perspec-
tive of the Brain Age paradigm. Chong et al. [10] exam-
ined if aging affects cortical thickness differently in 
patients with migraine compared to age-matched HC, 
potentially exacerbating cortical thinning in patients 
with migraine. For EM patients, the study found that 
patients with migraine experienced age-related thin-
ning in regions that do not thin in HC. This suggests 
that migraine may be linked to atypical cortical aging. 
Lisicki et  al., on the other hand, [11], employed FGD-
PET to investigate possible specific age-related meta-
bolic changes in the brain. They found that for EM 
patients advancing age was positively correlated to 
increased metabolism in the brainstem, hippocampus, 
fusiform gyrus and parahippocampus, regardless of the 
frequency of migraine or the duration of the disease. 
Taken together, these results are coherent with our 
study, both with regard to the existence of changes in 
the brain that are related to brain aging and with regard 
to the lack of association of some of these changes with 
disease duration.

It is also worth discussing our findings in the context 
of the broader spectrum of pain-related conditions. The 
existing literature presents conflicting results concern-
ing Brain Age alterations in the context of chronic pain 
[20, 21]. Cruz-Almeida et al. endorse the view that there 
is an increased Brain Age Gap, whereas Soros et al. pro-
vide results that contradict this perspective. A subse-
quent study aimed to clarify this issue by examining three 
distinct chronic pain conditions, namely trigeminal neu-
ralgia, osteoarthritis, and chronic back pain. The study 
found an increased Brain Age Gap in the first two condi-
tions when comparing patients to age- and sex-matched 
controls, yet no such disparity was identified in the case 
of chronic back pain [65]. Further research is needed to 
elucidate whether different chronic-pain conditions share 
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a common relationship with Brain Age increases, and 
where migraine lies within this context.

This research comes with several limitations. First, the 
cross-sectional design of the study limits our ability to 
establish causal relationships. This warrants a cautious 
interpretation of the findings and highlights the need for 
future longitudinal research to better understand the fac-
tors influencing the Brain Age Gap. Furthermore, addi-
tional phenotypic variables, such as cardiovascular risk 
metrics or cognitive performance scores, would have 
been helpful to clarify possible causal relationships medi-
ated by the Brain Age Gap.

Secondly, our Brain Age model only employs T1w MRI 
data, though the inclusion of other imaging modalities 
such as diffusion MRI or fMRI has shown to improve 
the accuracy of Brain Age predictions [67]. However, 
incorporating other modalities would have led to the 
creation of distinct Brain Age models for each modal-
ity, since many of the datasets used for training do not 
include other modalities, which in turn would compli-
cate the interpretation of the results. Alternatively, a 
much smaller sample size could have been used for train-
ing, which would have resulted in a less accurate model. 
Because of all these reasons, we chose to limit ourselves 
to T1w scans, although future work will need to include 
additional modalities such as diffusion MRI, as discussed 
earlier, or T2-weighted images, given their sensitivity to 
white matter hyperintensities, a well-known migraine 
characteristic associated with aging [68].

Third, high-frequency EM patients (10 to 14 headaches 
per month) were not included in the study. This decision 
was made to prevent potentially misclassified patients 
from skewing the results of the analysis since according 
to the literature [69] biologically they may resemble CM 
patients or they may even fulfill CM criteria part of the 
year.

Finally, given the moderate size of our sample and the 
much higher prevalence of migraine among women, few 
male subjects could be included, which prevented us 
from drawing any conclusions about the possible distinct 
behaviour of Brain Age in migraine between men and 
women.

Conclusion
In this study, we analyzed migraine using the Brain Age 
framework, which consists of training a machine learning 
model to predict age from MRI scans and later applying 
the resulting model to a cohort of interest. We found that 
CM patients exhibit an increased Brain Age Gap (i.e., the 
difference between the predicted age and the chronologi-
cal age) compared to HC. A milder Brain Age Gap was 
found for EM patients, although differences did not reach 
statistical significance.

Further analysis of the Brain Age model indicated that 
imaging features that have previously been associated 
with changes in migraine were among the main drivers 
of the differences in the predicted age. Also, a separate 
analysis using only morphological or intensity-based fea-
tures revealed different patterns, which could represent 
distinct processes within the alterations that are associ-
ated with the migraine brain.

In conclusion, the Brain Age paradigm has shown to 
be a promising viewpoint for the study of migraine, and 
future work will be needed to corroborate these findings.
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