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Abstract 

Targeting CGRP has proved to be efficacious, tolerable, and safe to treat migraine; however, many patients 
with migraine do not benefit from drugs that antagonize the CGRPergic system. Therefore, this review focuses 
on summarizing the general pharmacology of the different types of treatments currently available, which target 
directly or indirectly the CGRP receptor or its ligand. Moreover, the latest evidence regarding the selectivity and site 
of action of CGRP small molecule antagonists (gepants) and monoclonal antibodies is critically discussed. Finally, 
the reasons behind non‑responders to anti‑CGRP drugs and rationale for combining and/or switching between these 
therapies are addressed.
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Role of calcitonin gene‑related peptide 
in nociceptive transmission
Calcitonin gene-related peptide (CGRP) is one of the 
most investigated molecules in headache pathogenesis. 
In 1982, a novel 37 amino acid neuropeptide was dis-
covered that is derived from the alternative splicing of 
calcitonin gene (CALCA) mRNA in neural tissue [1]. It 
was hence named CGRP, later identified as α-CGRP. This 
peptide has an amphiphilic α-helix between residues 
8–18 that is important in the interaction with CGRP 
receptors [2], which were found to be of multiple sub-
types [3, 4]. CGRP is found in two isoforms in humans: 
α-CGRP and β-CGRP [5], the latter being encoded by a 
different CALCB gene, both expressing in the enteric 
nervous system [6] and the central nervous system (CNS) 
(reviewed in [7]). However, considering that that only 
α-CGRP plays a role in sensory trigeminal afferents and 

trigeminal pain-mediating areas in the CNS, and that for 
these reasons most studies focus on α-CGRP, this review 
will be limited to this isoform, with a focus on migraine 
and the trigeminovascular system.

Although the exact mechanisms underlying the onset 
of a migraine attack remain to be determined, it is now 
well-established that the onset of the throbbing head-
ache of migraine is mediated by CGRP release from the 
trigeminovascular system [8, 9]: a functional pathway 
consisting of sensory (pseudounipolar) neurons periph-
erally innervating the cranial meninges and their associ-
ated vasculature, whose cell somas are in the trigeminal 
ganglion (Fig.  1), and centrally projecting axons to the 
trigeminocervical complex that transmit nociceptive sig-
nals to the thalamus and higher order cortical regions 
[10–12]. Immunohistochemical studies have shown 
that CGRP is highly expressed in sensory unmyelinated 

Fig. 1 Anti‑CGRP drugs and their peripheral sites of action in the trigeminovascular system. Schematic of CGRP‑based therapies highlighting 
where the CGRP monoclonal antibodies (mAbs), CGRP receptor mAbs, and CGRP receptor antagonists (gepants) have their main site of action. The 
expression of  AMY1 receptors remains to be fully determined. Adapted from [12, 21]
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C-fibers arising from the trigeminal ganglia and dorsal 
root ganglia (DRG) as well as their terminals in the spi-
nal cord and brainstem [13, 14], with distribution cor-
relating with CGRP binding site localization [15]. For 
instance, around 50% of human trigeminal ganglion (TG) 
neurons show CGRP-immunoreactivity [16]. Similarly, a 
recent mRNA study found that up to 60% of human DRG 
neuron express CGRP [17]. Moreover, rodent data has 
revealed that in comparison to the TG, CGRP mRNA lev-
els are 20x – 250x lower in CNS structures such as lateral 
medulla and midbrain/hypothalamus, respectively [13]. 
CGRP released from trigeminal fibers located in the dura 
mater is unlikely to cross the blood–brain barrier (BBB) 
due to molecular size [18] and limited diffusion [19, 20].

CGRP was additionally shown to be located around iso-
lated dural and cerebral arteries, where it produces vaso-
dilation [22, 23]. Vasodilatory properties of CGRP were 
found to be one of the most potent identified in humans 
[24]. In 1987, first attempts to artificially induce headache 
and develop an experimental human model of migraine 
began using intravenous nitroglycerin (NTG), another 
potent vasodilator [25]. NTG administration provoked 
an initial mild headache in healthy volunteers and a 
delayed headache with migrainous features in patients 
with migraine [25], and it was later found that CGRP 

levels in peripheral vasculature were increased after such 
induction [26]. Its association with migraine was proved 
in human studies, where short-term CGRP elevation in 
local vasculature was observed in patient blood during 
migraine attacks with and without aura [27]. CGRP lev-
els after migraine attacks were also found to be decreased 
with sumatriptan treatment and coinciding with head-
ache improvement [28], providing evidence of this 
neuropeptide being involved in the headache phase of 
migraine. Further trials led to CGRP being injected into 
the peripheral vasculature of migraine patients causing a 
delayed headache with migrainous features, confirming 
that CGRP plays a key role in migraine pathophysiology 
[29]. Consequently, novel drugs were developed to target 
CGRP signaling through either direct blockade of CGRP 
or its receptor.

Pharmacology
CGRP is a member of the calcitonin (CT)/CGRP family 
of neuropeptides which also includes CT, amylin, adre-
nomedullin and intermedin/adrenomedullin 2 [7], with 
CGRP and amylin being the most closely-related in terms 
of amino acid sequence and function [30]. The recep-
tors that bind CGRP have only recently been fully char-
acterized [7]. As shown in Fig.  2, the canonical CGRP 

Fig. 2 Crosstalk between CGRP‑ and Amylin‑based therapies. CGRP and amylin 1  (AMY1) receptors are formed by association of either CLR or CTR 
with RAMP1, respectively. CGRP and amylin are equipotent at the  AMY1 receptor, while CGRP is more potent at the canonical CGRP receptor. These 
receptors have a distinct internalization profile. Current antimigraine drugs targeting CGRP (blue boxes) and potential antimigraine amylin drugs 
(white boxes) are shown. DACRAs, dual amylin and calcitonin receptor antagonist. Taken and modified from [31, 32]
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receptor is atypical among G-protein-coupled receptors, 
as its functionality depends on the presence of a G-pro-
tein coupled calcitonin receptor-like receptor (CLR), a 
receptor activity-modifying protein 1 (RAMP1), and the 
receptor component protein (RCP) [31, 32]. The ligand-
binding domain of the CGRP receptor is located at the 
extracellular domain and transmembrane bundle of CLR, 
with no direct involvement of RAMP1 but acting allos-
terically to enable CGRP recognition [7, 33]. Moreover, 
the CLR:RAMP1 complex allows reaching the plasma 
membrane and binding CGRP with high affinity [34]. 
Thus, co-expression of CLR and RAMP1 is necessary for 
CGRP to bind to the canonical CGRP receptor [35].

Moreover, CGRP is equipotent at activating a second 
receptor, the amylin 1  (AMY1) receptor, which contains 
RAMP1 but is coupled with the CT receptor (CTR) [31, 
36]. The activation of each of these receptors causes an 
increase in cAMP levels with downstream activation of 
protein kinase A, suggesting they are of the Gαs-coupled 
type [7]. Interestingly, in contrast to the CGRP recep-
tor, the  AMY1 receptor undergoes scarce internaliza-
tion (Fig. 2) [31]. As both receptors seem to colocalize in 
trigeminal fibers [37], there could be relevant feedback 
loops between CGRP acting at the CGRP and and  AMY1 
receptors [37, 38]. However, it remains to be determined 
how this contributes to CGRP physiology and the effec-
tiveness of current anti-CGRP drugs.

It is well-established that CGRP (peptide, receptors, 
and mRNA) is diffusely expressed across the peripheral 
and CNS in a variety of cell types [35, 39]. Understanding 
where CGRP and its receptors are expressed is relevant 
to understanding the mechanisms of drugs which target 
this neuropeptide system as well as drug-drug interac-
tions and potential adverse effects.

As shown in Fig. 1, the main sources of CGRP release 
are from trigeminal afferents [40, 41], that originate in 
the trigeminal ganglion and which upon electrical, chem-
ical, or mechanical stimulation or during spontaneous 
migraine attacks release CGRP, leading to dysfunctional 
nociceptive transmission and eventually headache [27, 
28]. Furthermore, recent immunofluorescence studies of 
these fibers have revealed that CGRP is mainly localized 
in C-fibers, whereas the components of the CGRP recep-
tor (CLR:RAMP1) are predominantly found in Aδ-fibers 
[42, 43]. This suggests that local release of CGRP from 
trigeminal C-fibers activates CGRP receptors in Aδ-fibers 
and adjacent cells [43, 44].

Centrally, CGRP and its receptor have been shown to 
be highly expressed in the amygdala, locus coeruleus, 
striatum, hypothalamus, and parabrachial nucleus [7, 35, 
45]. Studies in primates have also shown RAMP1 and 
CLR mRNA expression in the pineal gland [39]. Interest-
ingly, Purkinje cell bodies in the cerebellum colocalize 

CGRP and CGRP receptor (CLR and RAMP1) subunits 
[46], which also suggests that autocrine signaling may 
occur. As the complexity of the CGRPergic system and 
the interactions with its family of peptides is yet to be 
understood, a key question remains highly contested: 
where is the main antiheadache site of action (periph-
eral vs central) of anti-CGRP therapies? Thus, the follow-
ing sections will provide a critical analysis of the current 
evidence of the likely mode and site of action of CGRP 
antagonists and antibodies, as well as antimigraine drugs 
that indirectly modulate CGRP.

Gepants
Due to the key role of CGRP in migraine pathophysiol-
ogy, selective small-molecule CGRP receptor antagonists 
(gepants) were synthesized and proved to be effective in 
the acute [47, 48] and preventive treatment of migraine 
[49, 50]. Although the first generation of gepants (e.g., 
olcegepant and telcagepant) was promising, pharmacoki-
netic and hepatotoxicity limitations stopped their devel-
opment [51]. However, a new generation of gepants was 
developed and overall, all have shown efficacy and safety 
profiles with no demonstrable abnormalities in serum 
transaminases (reviewed in [52]). As shown in Table  1, 
ubrogepant, rimegepant and zavegepant (the first intra-
nasal gepant) are effective for the acute treatment of 
migraine [52–54], whereas atogepant and rimegepant 
have demonstrated to be safe, efficacious and tolerable as 
a preventive treatment for migraine [49, 50].

Mode of action
Gepants bind with high affinity to the canonical CGRP 
receptor (CLR:RAMP1), and they seem to have negligible 
to low affinity for adrenomedullin receptors, composed 
of RAMP2 and RAMP3 proteins [36, 55]. However, as 
shown in Fig.  2, the  AMY1 receptor (CTR:RAMP1), 
one of three amylin receptors, could also be targeted 
by CGRP receptor antagonists. This is explained by the 
antagonist selectivity driven by the RAMP receptor 
subunit and the similar RAMP1 subunit shared by the 
CGRP and  AMY1 receptors [36]. Illustrating this cross-
reactivity, the antagonist selectivity of rimegepant is only 
30-fold higher at CGRP receptors than  AMY1 receptors 
[56]. The antagonism at these two receptors is a hypoth-
esis proposed to explain the dual inhibition of both C-fib-
ers and Aδ-fibers by atogepant observed in the trigeminal 
ganglion of rats [57], however the clinical implications of 
blocking both receptors remain to be determined.

Site of action
Based on their small molecular weight, the gepants 
could theoretically cross the BBB [51] hence, it would 
be expected that their antimigraine efficacy is the result 
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of antagonizing the CGRP receptor both peripherally 
and centrally. In this regard, electrophysiological studies 
in rats have revealed that the CNS structures being tar-
geted by intravenous or intraperitoneal administration 
of gepants include second- and third-order nociceptive 
trigeminovascular neurons [58, 59], as well as the peri-
aqueductal gray and nucleus raphe magnus, descending 
pain modulatory systems [60, 61]. These drugs were also 
able to ameliorate cortical spreading depression (CSD)-
induced photophobia and hypomobility in mice [62]. 
However, the placement of recording electrodes or direct 
delivery of drugs might break the BBB and contribute to 
the observed effects of gepants. Moreover, positron emis-
sion tomography (PET) studies in non-human primates 
with the CGRP receptor tracer [C-11]MK-4322 and tel-
cagepant indicate that gepants do not require to pene-
trate the BBB to exert their antimigraine action.

Sur et  al. found that after the oral administration of 
telcagepant only a small percentage could be detected 
in cerebrospinal fluid (CSF) as compared to plasma 
(CSF/plasma ratio of ~ 1%) [63]. Furthermore, another 
study in primate and human brain regions revealed that 
only supratherapeutic doses of telcagepant were able 
to achieve a moderate CGRP receptor occupancy (43–
58%), while in healthy volunteers clinically-relevant 
doses only achieved low receptor occupancy (≤ 10%) 
[64]. Lastly, another study with the same PET tracer 
found no evidence of CGRP receptor central occupancy 
after therapeutic doses of telcagepant in migraine 
patients during ictal and interictal periods [65]. Taken 
together, these results suggest that at therapeutic con-
centrations, a central antagonism of the CGRP receptor 
is probably not required for the efficacy of gepants in 
migraine treatment. Moreover, gepants have a very lim-
ited ability to cross the BBB [66], and it remains to be 
determined whether they can target CNS areas that are 
not covered by the BBB (i.e., circumventricular organs), 

where dense CGRP and amylin binding is present [67, 
68], and the clinical relevance, if any.

Anti‑CGRP monoclonal antibodies
Compared to gepants, monoclonal antibodies (mAbs) 
are large heterodimeric protein molecules (molecu-
lar weight ~ 150  kDa) designed to block targeted mol-
ecules, especially for therapeutic purposes (Table  2). 
Four monoclonal antibodies have been developed to 
target CGRP signaling so far. Erenumab acts over the 
CGRP receptor, whereas fremanezumab, galcanezumab 
and eptinezumab target the CGRP ligand itself. These 
four drugs have demonstrated to be safe, efficacious, 
and tolerable as a preventive treatment for migraine 
(galcanezumab also for episodic cluster headache pre-
vention) and are currently studied in other headache 
disorders. Table 3 summarizes their characteristics and 
current clinical use. As these drugs have been mainly 
investigated in migraine, this section will focus on the 
evidence on this primary headache disorder.

Table 1 Gepants currently available

Ubrogepant Zavegepant Rimegepant Atogepant

Indication Acute treatment of migraine with or without aura in adults Acute treat‑
ment of migraine 
with or without 
aura in adults

Acute treat‑
ment of migraine 
with or without 
aura in adults
Preventive treat‑
ment of episodic 
migraine in adults

Preventive treatment of episodic 
migraine in adults

Dosage 50–100 mg p/o as needed. Second dose 2 h after the initial 
dose if needed. Max 200 mg/24 h
No established safety of treating > 8 migraines / 30 days

10 mg intranasal
No established 
safety of treating > 8 
migraine / 30 days

75 mg p/o 
as needed. Max 
75 mg /25 h
No established 
safety of using > 18 
doses /30 days

10 mg, 30 mg or 60 mg p/o daily
Safe for daily use

Table 2 Molecular characteristics of anti‑CGRP monoclonal 
antibodies and gepants. Adapted from [64, 69–71]

Gepants Anti-CGRP monoclonal antibodies

Target CGRP receptor CGRP receptor or ligand

Clearance Liver, kidney Reticuloendothelial system

Half‑life 5–11 h 3–7 weeks

Size 0.5–0.6 kDa 143–146 kDa

Ability 
to cross blood–
brain barrier

Low (1.4% 
CSF/plasma 
ratio)

No

Administration Oral, intranasal Parenteral

Immunogenicity No Yes
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Mode of action
Erenumab binds to the CLR:RAMP1 extracellular domain 
interface of the CGRP receptor to block it [72]. However, 
the binding of erenumab to the CGRP receptor also pre-
vents the action of other two peptides, adrenomedullin 
and intermedin/adrenomedullin 2, that are also able to 
act on the CGRP receptor [55]. Erenumab is highly selec-
tive for the canonical CGRP receptor (CLR:RAMP1) but 
can still bind to other receptors with less affinity such as 
CLR:RAMP2 and CLR:RAMP3 (adrenomedullin recep-
tors), or CTR:RAMP1  (AMY1 receptor) complexes [73]. 
This is relevant as CGRP is able to activate these other 
receptors, especially  AMY1 [74]. Moreover, genetic vari-
ants occurring at the CGRP receptor may influence the 
peptide and/or drug affinity response [75]. In the case of 
galcanezumab, fremanezumab and eptinezumab, these 
monoclonal antibodies bind the same region of CGRP 
ligand that binds to the receptor, thus rendering both 
α-CGRP and β-CGRP incapable of binding to the CGRP 
receptor [76, 77]. Because of this ligand-specific mecha-
nism, there is no evidence that fremanezumab interacts 
with the  AMY1 receptor, therefore not affecting amylin 
responses [55].

Both CGRP ligand or receptor mechanisms interrupt 
CGRP-induced signaling via cAMP accumulation and 
potentially inhibit the CGRP receptor internalization 
[78]. However, mechanisms of receptor internalization 
are complex and the drugs themselves can be internal-
ized. Erenumab seems to undergo internalization in 
CGRP and  AMY1 receptor expressing cells, interestingly 
this was not the case for fremanezumab [55]. Gepants 
also undergo internalization and due to their different 
pharmacokinetic profile, they may also block CGRP sign-
aling from within endosomes [79], this could explain the 
effective use of gepants for acute treatment during con-
comitant erenumab preventive administration [80]. The 
meaning and clinical significance of internalization and 
intracellular signaling as molecular mechanisms remain 
unknown.

Serum levels of CGRP after treatment have been 
explored, especially with erenumab, to assess the pres-
ence of CGRP up or down-regulation mechanisms 
induced by the treatment [81–83]. Results are still highly 
controversial and this is mainly due to the different meth-
odologies used, however few studies showed reduction 
in CGRP levels after treatment [83] or no difference [81, 
82], questioning the role of using CGRP as a potential 
biomarker.

Recently, new molecular mechanisms have been dis-
closed and it has been demonstrated that CGRP released 
from trigeminal fibers can signal on surrounding 
Schwann cells [21] and can be taken up and re-released 
in the dura. However, the latter mechanism seems not to 
be mediated by presynaptic CGRP receptors, as CGRP 
receptor antagonists were not able to block the uptake 
of CGRP. Such mechanisms may be relevant in regulat-
ing CGRP availability and may also influence mAbs and 
gepants treatment responses [84].

Site of action
The exact site of action of anti-CGRP mAbs in migraine 
prevention is only partially understood. As previously 
mentioned, CGRP acts as a vasodilator at the level of the 
vascular smooth-muscle cells of intracranial arteries as 
well as a nociceptive neuropeptide in perivascular trigem-
inal primary afferents [85]. Thus, the probable preven-
tive effect of anti-CGRP mAbs in migraine is mediated 
by inhibition of first-order trigeminovascular neurons 
that are involved in pain transmission. Fremanezumab 
is known to block CGRP-induced vasodilation in human 
meningeal arteries in  vitro [86]. Moreover, preclinical 
data have shown that, in a migraine rat model of CSD, 
fremanezumab inhibited Aδ- but not C-type primary 
afferent meningeal nociceptors, that innervate the cra-
nial dura [44]. Aδ-fibers are activated by release of CGRP 
from C-type nociceptors after CSD and activate specific 
type of central trigeminovascular neurons, the high-
threshold (HT) neurons, whose input is predominantly 

Table 3 Anti‑CGRP monoclonal antibodies

Abbreviations: cCH Chronic cluster headache, eCH Episodic cluster headache, IV Intravenous, SC Subcutaneous injection, PTH Acute post‑traumatic headache

Monoclonal antibodies Erenumab Galcanezumab Fremanezumab Eptinezumab

Target CGRP receptor CGRP ligand CGRP ligand CGRP ligand

IgG type IgG2, human IgG4, humanized IgG2a, humanized IgG1, humanized

Administration Monthly SC Monthly SC Monthly or quarterly SC Quarterly IV

Doses approved for 
migraine prevention (EM, 
CM)

70 mg or 140 mg 120 mg (240 mg loading dose) 225 mg monthly or 675 mg quarterly 100 mg or 300 mg

Other headache disorders 
(approved or under inves‑
tigation)

cCH, PTH eCH (approved 300 mg monthly), 
cCH (no primary endpoint met)

eCH and cCH (primary endpoint unlikely 
to be met), PTH

eCH, cCH
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from Aδ-fibers and eventually transmit the nociceptive 
signals to the thalamus [44]. Another study, confirmed 
that fremanezumab selectively inhibited the activation 
and sensitization of HT neurons in a rat model of CSD-
evoked or mechanical stimulation of the dura [87]. These 
data remark that the activation of the Aδ-HT nociceptive 
pathway may be sufficient for the initiation of headache 
perception and the development of central sensitization 
and its clinical correlate that is allodynia [44, 87].

Anti-CGRP mAbs are thought to act mainly peripher-
ally, due to their large size. Two studies using radiolabeled 
mAbs confirmed this hypothesis [20, 69]. In rats with 
uncompromised BBB, fremanezumab could be detected 
in the dura, dural blood vessels, trigeminal ganglion, C2 
dorsal root ganglion, the parasympathetic sphenopalatine 
ganglion, and the sympathetic superior cervical ganglion 
but not in central areas such as the cortex, spinal trigemi-
nal nucleus, thalamus, nor the hypothalamus where the 
BBB is relatively open [20]. However, all the previous 
mentioned studies support the concept that by acting in 
the periphery, the anti-CGRP mAbs also exert a modu-
lation of central neurons, which probably contributes to 
their preventive effect. This is also observed clinically, 
where central anticipatory and accompanying symptoms 
of the headache phase seem to improve with anti-CGRP 
mAbs treatment [88]. Moreover, translational studies 
using EEG techniques have shown that abnormal visual 
cortical activity can be restored with galcanezumab [89] 
and a study using functional MRI showed that galcane-
zumab decreases hypothalamic activation [90].

A final remark on the site of action of anti-CGRP mAbs 
must be done in relation to headache disorders other 
than migraine. Melo-Carrillo et al. observed that freman-
ezumab was not able to inhibit the activation of HT neu-
rons from mechanical stimulation of other regions such 
as the skin or cornea [87], thus suggesting a selectivity of 
these drugs to migraine, but not to other cranial and/or 
extracranial pain conditions, such as trigeminal neural-
gia. A clinical study has been conducted on erenumab in 
trigeminal neuralgia with negative results [91]. However, 
CGRP mechanisms can indeed be present and therefore 
be targeted by anti-CGRP mAbs in other headache disor-
ders. Galcanezumab is a Food and Drug Administration 
approved treatment for episodic cluster headache (CH) 
[92], but the phase 3 randomized controlled trial (RCT) 
on chronic CH did not meet the primary endpoint [93]. 
Nevertheless, in clinical practice these latter patients also 
seem to benefit from the treatment [94]. Eptinezumab 
and erenumab are currently being studied in episodic 
and/or chronic CH [95–97], whereas studies on fremane-
zumab in both episodic and chronic CH were terminated 
following a futility analysis which revealed that primary 

outcomes were unlikely to be met [98, 99]. Among sec-
ondary headache disorders, post-traumatic headache [45, 
46] involves CGRP [100, 101], with promising prelimi-
nary studies [102], although RCTs on anti-CGRP mAbs 
are still ongoing [103, 104]. Moreover, the role of CGRP 
and anti-CGRP mAbs is being investigated in headache 
attributed to idiopathic intracranial hypertension [105, 
106].

Antimigraine drugs that modulate CGRP
5-HT1 agonists
In the last decades, the gold standard for acute migraine 
treatment has been the triptans, 5-HT1B/1D/(1F) receptor 
agonists. During a migraine attack, they can normalize 
the elevated CGRP plasma levels by inhibiting further 
release from trigeminal afferents, thereby decreasing 
nociceptive transmission (Fig. 1). Experimentally, triptans 
inhibit CGRP release from peripheral and central trigem-
inal fibers, however, low lipophilicity and interactions 
with BBB efflux transporters limit their central actions 
in vivo [107]. In addition, activation of a high population 
of 5-HT1B receptors on vascular smooth muscle is mainly 
associated with potentially dangerous cardiovascular side 
effects, contraindicating its use in patients with heart dis-
ease and hypertension [108, 109].

Ditans are a new group of acute antimigraine drugs 
which are highly lipophilic and selective for the 5-HT1F 
receptor [110]. Lasmiditan is the first drug approved in 
this class. Mechanistically, ditans inhibit the release of 
CGRP from peripheral and central trigeminal termi-
nals [111]. Higher incidence of CNS-related adverse 
effects like dizziness, paresthesia, vertigo, fatigue, and 
somnolence can be due to the high BBB permeability 
and abundant expression of 5-HT1F receptor in corti-
cal areas, hippocampal formation, and claustrum as well 
as throughout the vestibular system [112, 113]. Ditans 
lack cardiovascular side effects [114], which may offer 
an alternative to triptans in patients with cardiovascu-
lar diseases; however, odds ratio for pain freedom and 
pain relief at 2 h were lower when compared with most 
triptans [115].

Preventive drugs
Although the key mechanisms and sites of action for 
medications used in migraine prevention remain unclear, 
it seems that almost all affect the trigeminal CGRP sys-
tem indirectly [116, 117]. They inhibit CGRP release and 
consequently reverse sensitization in chronic migraine 
[116, 118]. Therefore, CGRP reduction might be at play 
in determining the effectiveness of non-specific anti-
migraine preventive drugs, whereas interictal CGRP 
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levels can be a predictor of response to these preventives 
[118, 119].

Topiramate is an antiepileptic drug that can be effica-
cious in migraine prevention via different mechanisms 
[116]. Preclinical studies demonstrated that it decreases 
CGRP release from sensory trigeminal neurons in 
response to depolarizing stimuli, in a time-concentration 
manner, hence, decreasing nociception [120]. Topira-
mate also inhibits nitric oxide/proton mediated CGRP 
release  from peripheral  afferents [120]. However, unal-
tered CGRP plasma levels by a low-dose of topiramate in 
a small clinical trial indicates that the antimigraine effects 
of topiramate could be independent from the CGRP 
pathway [121].

The other non-specific antimigraine medication which 
acts by inhibiting CGRP release from meningeal and 
extracranial thin myelinated C-fibers is onabotulinum-
toxinA (BoNT-A) [122], an injectable formulation of 
a neurotoxin derived from the bacterium clostridium 
botulinum. The first mechanism through which BoNT-
A blocks CGRP release is by preventing the adhesion of 
synaptic vesicles to the cell surface [123]. Furthermore, 
BoNT-A administration might reduce transient recep-
tor potential (TRP) channel  expression, particularly 
TRP vanilloid 1 (TRPV1) and TRP ankyrin1 (TRPA1), 
on unmyelinated C-fibers in the synaptic membrane 
and as a result decrease response to nociceptive stimuli 
and CGRP release (Fig.  1) [123, 124]. Therefore, BoNT-
A can revert and prevent CGRP-dependent activation of 
thick myelinated Aδ-nociceptors, meningeal vessels, and 
immune cells [122, 125, 126].

Propranolol is a non-selective β-adrenoceptor antago-
nist also frequently used to prevent migraine attacks. 
However, it has been shown that it has agonist effects 
on prejunctional 5-HT1D and 5-HT1F receptors in 
trigeminal fibers through which can inhibit the release 
of CGRP from these fibers that innervate the forehead 
skin and dura mater [117]. Interestingly, a single point 
mutation in the seventh transmembrane domain of the 
5-HT1 receptor increases 100–1000 fold the affinity of 
β-adrenoreceptor antagonists for the 5-HT1D/1F receptors 
[127].

Valproate is widely used as treatment for seizure 
and bipolar disorder. It also prevents migraine attacks 
through different mechanisms. Animal studies have 
shown that it restores brain GABA levels [128], hence 
neuron activation inhibition [129], that might affect 
CGRP and c-fos expression via central/peripheral sites 
of action [130]. Valproate also inhibits NF-kB pathway in 
the TNC, leading to a reduction in CGRP synthesis [130].

It is remarkable that not only non-CGRP preven-
tive drugs, but also specific medications used for acute 

migraine attacks can modulate the CGRP pathway. This 
finding can improve our understanding of migraine 
pathophysiology and be of clinical interest to determine 
more efficacious therapeutic strategies.

Non‑responders to CGRP‑targeted therapies 
in migraine
The existence of non-responders to anti-CGRP mAbs 
or gepants is an interesting and complex matter. Several 
explanations are possible. First, a greater CGRP antag-
onism at a central level may be necessary for migraine 
prevention. In this context, future studies comparing 
directly gepants, that are potentially able to act centrally, 
and anti-CGRP mAbs may provide insights on this mat-
ter. However, at present, clinical trials for each drug 
report similar responder rates [70, 131] and preclinical 
data only suggest that, in rat models, anti-CGRP mono-
clonal antibodies may have, as expected, a longer dura-
tion of effect but also a more rapid onset of response 
[132]. Second, anti-CGRP antagonism may be insuffi-
cient due to the existence of concomitant other patho-
physiological pathways. CSD, for example, is able to 
activate C-fiber meningeal nociceptors that eventually 
activate another type of central trigeminovascular neu-
rons, the wide-dynamic range (WDR) neurons [43, 133]. 
The absence of CGRP receptors from the meningeal 
C-fibers renders the C-WDR pathway CGRP-independ-
ent, and confirms why in preclinical studies it is unre-
sponsive to fremanezumab [44]. Nevertheless, C-fibers 
and, consequently, WDR neurons can be inhibited by 
administration of BoNT-A [134], providing a rationale 
for associating BoNT-A to anti-CGRP mAbs in clinical 
practice [124]. Clinical studies are still scarce but have 
shown potential benefits of combination therapy [125, 
135]. Third, non-responders could have a state of cen-
tral neuron sensitization, supported by the presence of 
non-ictal allodynia, that is independent from peripheral 
activation and that cannot be attenuated by anti-CGRP 
mAbs [136]. In clinical practice, presence of non-
ictal allodynia seems to be a useful predictor of lack of 
response to galcanezumab [136]. Finally, not only molec-
ular mechanisms, as previously mentioned, but also the 
mode of action may differ from one anti-CGRP mAb 
to another, influencing treatment response. One fMRI 
study showed differences between erenumab and galcan-
ezumab in the brain areas with decreased activity after 
treatment [90]. Although its full meaning is unclear, this 
finding could still have implications on therapeutic out-
comes of anti-CGRP mAbs and potentially further sup-
ports switching non-responders to another anti-CGRP 
mAb (or gepants approved for preventive treatment) as a 
therapeutic option in clinical practice.
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Combining and/or switching drugs that modulate 
CGRP
It is logical to think that different molecular mecha-
nisms may result in different response rates, tolerabil-
ity, and side effects. However, at present we lack a real 
comparative study among anti-CGRP mAbs (or gepants 
used for preventive treatment) and response rates are at 
least similar in clinical trials and real-world studies [70, 
137–139]. Yet, there are indirect clinical signs pointing 
to different mechanisms. First, side effects are differ-
ent, and specifically constipation has been described for 
erenumab, galcanezumab and atogepant [52, 140]. This 
may be because these drugs can simultaneously block the 
CGRP and  AMY1 receptors that may be more relevant at 
gastro-intestinal level [141]. Second, in clinical practice 
there are patients not responding to one anti-CGRP mAb 
that are still able to respond to another with a different 
mechanism [142]. The different mechanistic and clinical 
scenarios are described in Table 4.

As some studies are starting to show that combin-
ing gepants and triptans [143, 144], or gepants with 
anti-CGRP mAbs seem safe, well-tolerated and could 
have synergistic effects on pain relief in patients with 
migraine [80, 145], a combined antagonism of CGRP 
may give wider options to clinicians to choose between 
medications from different classes based on individual 
patient’s risks and responses Concurrently, the involve-
ment of amylin in migraine pathophysiology is becoming 
evident [146, 147], which suggests that development of 
novel drugs targeting the  AMY1 receptor, either via selec-
tive antagonists or antibodies, might also be effective 

for treating migraine (Fig. 2). Obviously, further clinical 
studies are warranted to evaluate the safety and efficacy 
of dual blockage of CGRP (or CGRP and amylin), due to 
its diverse physiological functions in the human body.

Other sites of action
As CGRP exerts different physiological functions, CGRP 
antagonism through anti-CGRP mAbs or gepants may 
mediate different (side)-effects; it is also worth consider-
ing that these drugs might have additional non-sensory 
antinociceptive sites of action, as resident immune cells, 
fibroblasts, and dural vessels are capable of modulating 
the activity of meningeal nociceptors [12, 40]. Clinical 
studies have demonstrated that these drugs are generally 
safe and well-tolerated, even at long term [70, 148]. How-
ever, concerns on cardiovascular safety have been raised, 
specifically due to the vasodilating properties of CGRP 
and its potential protective role during cardiac and/or 
cerebral ischemia [149]. A preclinical study showed that, 
although erenumab inhibits the vasodilatory responses of 
CGRP especially in the distal portion of the human coro-
nary artery, it does not influence those of other vasodila-
tors [150]. A clinical study on erenumab in patients with 
stable angina showed no significant changes in exercise 
treadmill test [151], supporting safety in this population. 
However, further studies assessing cardiovascular safety 
of anti-CGRP mAbs and gepants should be conducted, 
specifically focusing on women population that may be 
more prone to cardiac events involving the distal portion 
of the coronary artery [152]. Other effects on the vascular 
system may be responsible for reported cases of Raynaud 

Table 4 Mechanistic and clinical scenarios of anti‑CGRP mAbs

(Super-) Responders to 
mAbs

Non-responder to erenumab Non-responder to anti-CGRP ligand mAbs

Responder to switch 
(ligand)

Non-responder to switch 
(ligand)

Responder to switch 
(erenumab)

Non-responder to switch 
(erenumab)

Molecular mechanism
 CGRP antagonism suf‑
ficient

CGRP antagonism sufficient 
but:
1. CGRP receptor block 
insufficient
2. CGRP must be blocked 
elsewhere

CGRP antagonism insuf‑
ficiently blocked and/
or other molecules may be 
involved

CGRP antagonism sufficient 
but:
1. circulating CGRP block 
insufficient
2. other molecules
acting on the CGRP recep‑
tor or similar receptor 
 (AMY1) must be blocked

CGRP antagonism insuffi‑
ciently blocked and/or other 
molecules may be involved

Mode of Action
 Peripheral CGRP antago‑
nism is sufficient

Peripheral CGRP antago‑
nism is sufficient

Peripheral CGRP antago‑
nism is probably insufficient 
and:
1. More central action may 
be required
2. Other CGRP‑independent 
pathways are involved 
peripherally or centrally

Peripheral CGRP antago‑
nism is sufficient

Peripheral CGRP antagonism 
is probably insufficient and:
1. More central action may be 
required
2. Other CGRP‑independent 
pathways are involved 
peripherally or centrally
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syndrome in patients treated with mAbs, but data are still 
unclear and the studies are warranted [153].

Among other sites of action of anti-CGRP mAbs and 
gepants, data from real-world experience of these drugs 
have disclosed that the GI can be affected, resulting as 
previously mentioned, in constipation [52, 141]. These 
drugs may also block the role of CGRP in hair growth, 
leading to alopecia [154], and bone formation [155] all 
these potential effects need to be better investigated.

Conclusion
Drugs that block the trigeminal CGRPergic system 
are effective in the preventive and acute treatment of 
migraine. Current lines of evidence indicate that the ther-
apeutic effect of the current anti-CGRP mAbs is mainly 
peripheral, and this also appears to apply for gepants. 
Even though gepants could cross the BBB, different stud-
ies indicate that this site does not appear to play a promi-
nent role in the antimigraine effects of these drugs. So, all 
this reveals that migraine attacks can be treated and pre-
vented via peripheral blockage of CGRP. Further research 
is clearly needed to fully elucidate the pharmacology of 
anti-CGRP therapies, this could allow us to understand 
why some patients with migraine are non-responders or 
stop responding to these medications.
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