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Abstract 

The Notch gene, a highly evolutionarily conserved gene, was discovered approximately 110 years ago and has been 
found to play a crucial role in the development of multicellular organisms. Notch receptors and their ligands are 
single-pass transmembrane proteins that typically require cellular interactions and proteolytic processing to facili-
tate signal transduction. Recently, mounting evidence has shown that aberrant activation of the Notch is corre-
lated with neuropathic pain. The activation of the Notch signaling pathway can cause the activation of neuroglia 
and the release of pro-inflammatory factors, a key mechanism in the development of neuropathic pain. Moreover, 
the Notch signaling pathway may contribute to the persistence of neuropathic pain by enhancing synaptic transmis-
sion and calcium inward flow. This paper reviews the structure and activation of the Notch signaling pathway, as well 
as its potential mechanisms of action, to provide novel insights for future treatments of neuropathic pain.
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Introduction
Neuropathic pain is chronic pain caused by lesion or 
diseases of the somatosensory system. Neuropathic pain 
has various etiologies and complex pathogenesis, with 
an incidence of 6.9% to 10% [1–4]. It is regarded as one 
of the most significant health problems in modern soci-
ety [5]. The common characteristics of neuropathic pain 
include hyperalgesia, abnormal pain, and spontaneous 
pain [2, 3, 6]. Examples of common neuropathic pain 
encountered in clinics are postherpetic neuralgia, trigem-
inal neuralgia, complex regional pain syndrome, and dia-
betic peripheral neuralgia [7]. Drug therapy is currently 
the main therapeutic approach for neuropathic pain [7]. 
Despite the availability of a variety of drugs, the thera-
peutic effect is limited and accompanied by side effects. 
Clinically, there is still a need for the development of safe 
and effective drugs, as the current therapeutic options 
are not satisfactory [8].

The duration of neuropathic pain is often longer than 
the time of injury and some cases persist throughout life 
[9]. Chronic neuropathic pain may trigger concomitant 
anxiety and depression, significantly impairing patients’ 
quality of life and contributing to the overall disease bur-
den [4, 10]. Emerging research has indicated that the acti-
vation of glial cells and related signaling pathways assume 
an integral role in the development and sustenance of 
neuropathic pain [6].

The Notch gene, originally discovered by Morgan and 
his colleagues in the mutant drosophila in 1917, was 
named after the "notch" observed on the edge of the 
wings of drosophila melanocytosis resulting from par-
tial function loss of this gene [11–13]. Notch homologs 
were subsequently identified in several metazoans such 
as Caenorhabditis elegans and Xenopus, all of which 
exhibited similar structures and signal components [14–
16]. The Notch is highly conserved in evolution, widely 
found in both vertebrates and invertebrates, and plays 
a critical role in various physiological and pathological 
developmental processes including cell proliferation and 
migration, immune responses, angiogenesis, metastasis, 
memory, and neurological disorders, among others [17–
20]. Therefore, the abnormality in the Notch signaling 
pathway can lead to serious pathological damage.

In recent decades, research has uncovered that acti-
vation of the Notch signaling pathway governs synaptic 
differentiation and transmission in the hippocampus [21, 
22]. The Notch pathway is crucial in inducing and pre-
serving neuropathic pain at the spinal level [22, 23]. The 
existing experimental evidence indicates that the activa-
tion of the Notch signaling pathway is involved in the 
pathological process of neuropathic pain. In this review, 
we present a systematic and comprehensive exposition 
of the structure, distribution, function, activation, and 

possible mechanisms for neuropathic pain of the Notch 
signaling pathway.

Notch signaling pathway
Notch signaling pathway structure
The Notch signaling pathway participates in numerous 
aspects of physical development, such as cell differentia-
tion, tissue development, and organogenesis, as well as the 
occurrence and development of various diseases [17, 24]. 
Therefore, comprehending the structure of the Notch sign-
aling pathway is an essential requirement for exploring the 
pathogenesis of these diseases. The Notch gene encodes 
a membrane protein receptor that is composed of three 
components: the Notch receptor, the Notch ligand (DSL 
protein), and the DNA binding sequence CSL (CBF1/
Su(H)/Lag-1) [25, 26].

Notch receptor
The Notch receptor is a type I transmembrane protein 
with a single-pass domain, expressing on the cell mem-
brane surface [27–30]. In mammals, there are four differ-
ent Notch receptors, Notch1-4, each of which is encoded 
by a distinct gene. Notch1 and Notch2 are involved in the 
entire physical development and are widely expressed 
in many tissues of adult mammals, while Notch3 is pre-
dominantly expressed in vascular smooth muscle and 
pericytes, and Notch4 is highly expressed in endothelial 
cells [30]. It has been discovered that all Notch recep-
tors, except Notch4, play a role in the development 
and maintenance of neuropathic pain. The expression 
of Notch1-3 in specific regions of the pain circuit is 
shown in Table 1. Notch1 is involved in regulating syn-
aptic activity [31], Notch2 induces various intracellular 
responses associated with neuropathic pain [32], and 
Notch3 is associated with the differentiation and matura-
tion of spinal cord neurons [33], the precise mechanisms 
require further investigation. All Notch receptors con-
sist of three regions: the extracellular region (NEC), the 

Table 1 Expression of Notch receptor in specific region in the 
pain circuit

Receptor Region Reference

Notch1 Dorsal root ganglia (DRG)  [31, 36–38]

Spinal cord dorsal horn  [23, 39]

Sciatica nerve  [39]

Anterior cingulate cortex (ACC)  [40]

Notch2 Dorsal root ganglia (DRG)  [32, 33]

Spinal cord dorsal horn  [32, 33]

Notch3 Spinal cord neuron precursors and/
or immature neurons

 [33, 41]
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transmembrane region (TM), and the intracellular region 
(NICD/ICN) [19, 26, 34, 35].

Extracellular region (NEC) The extracellular region 
of Notch receptors is a structural domain comprised of 
29–36 tandems epidermal growth factor (EGF) sequences 
and three cysteine-rich Lin Notch repeats [17, 20, 26, 29]. 
Its primary function is to initiate notch signaling by bind-
ing ligands. In mammals, Notch1 and Notch2 contain 36 
EGF-like repeats; Notch3 contains 34 EGF-like repeats, 
and Notch4 contains 29 EGF-like repeats [42].

Transmembrane region (TM) In the transmembrane 
region, an S3 cleavage is situated between glycine 1–1743 
and valine 1–1744. The hydrolysis of the Notch recep-
tor at the S3 site, including that of the Presenilin (mutant 
progerin) protein, cleaves the Notch receptor into the 
intracellular region ICN and a short transmembrane 
fragment. The Notch receptor’s single transmembrane 
structural domain concludes with a C-terminal "stop 
translocation" signal comprising of 3–4 arginine/lysine 
(Arg/Lys) residues [43].

Intracellular domain (NICD/ICN) The intracellular 
domain (NICD) of the Notch receptor localizes to the 
nucleus and represents the final outcome of Notch recep-
tor activation [43]. This region primarily consists of one 
RAM (RBP2J kappa associated molecular) domain, seven 
anchor protein repeats (ankyrin repeats, ANK), two 
nuclear localization signals (NLS), one translation ini-
tiation region (translational active domain, TAD), and a 
PEST region (Proline, P (proline); Glutamate, E (gluta-
mate); Serine, S (serine); Threonine, T (threonine)) [24, 
29, 44]. The RAM region binds to DNA-binding protein 
(C2 promoter-binding factor (CBF)); while the ANK 
domains enhance Notch activation and facilitate inter-
actions with other proteins. The PEST region plays an 
important role in the degradation of the Notch receptor 
[43, 44]. All four Notch receptors contain seven ANK 
structural domains and a PEST region. Notch1 and 
Notch2 possess the transcriptional activation domain 
(TAD), which is absent in Notch3 and Notch4. The NICD 
domain serves as the active form of the Notch receptor, 
and it’s binding to transcriptional activators initiates the 
activation of Notch target genes [19].

Notch ligand
Notch ligands, also known as DSL proteins, have been 
shown to exist in mammals in the form of five Notch 
ligands [43, 45, 46]: delta-like ligand 1 (DLL1), delta-like 
ligand 3 (DLL3), delta-like ligand 4 (DLL4), jagged-1 
(JAG1) and jagged-2 (JAG2), each with both unique 

and redundant functions. The Delta-like family is dis-
tinguished from the Serrate family by the presence or 
absence of a cysteine-rich (CR) structural domain [47]. 
Notch ligands are transmembrane proteins that pos-
sess a conserved molecular structure, abbreviated as 
Delta/Serrate/Lag2, comprising an extracellular region 
with multiple EGF-R structural domains and DSL 
structural domains (cysteine-rich) that contain Notch 
receptor binding sites, thereby explaining Notch inter-
actions, and short but distinctive intracellular structural 
domains [26, 30].

Notch ligands bind to Notch receptors on neighbor-
ing cells as well as on the same cell, which leads to acti-
vation or inhibition of Notch signaling [27, 48, 49]. This 
interaction occurs between the extracellular structural 
domains of Notch receptors and the DSL domains of 
Notch ligands.

DSL contains a 45 amino acid sequence consisting of 
six cysteines and three glycines [19]. In addition to the 
canonical DSL ligands, there are also atypical ligands 
that lack the DSL structural domain. These non-canon-
ical ligands are a structurally diverse group of proteins 
that include integrally and glycosylphosphatidylinositol 
(GPI)-linked membrane proteins, which modulate Notch 
receptor activity [50].

DNA binding sequence CSL
CBF-1 (C-promoter binding factor-1) is a transcriptional 
repressor, called RBP-JK (recombination signal binding 
protein-Jk) in mammals [51], which recognizes and binds 
to a specific DNA sequence located at the promoter of 
Notch-inducible genes (GTG GGA A). It plays a key role 
in the Notch signaling pathway. Moreover, CBF-1 acti-
vates transcription by binding to the RAM and ANK 
structural domains of the Intracellular Domain of Notch 
(ICN), the binding of ICN displaces the SMRT co-inhib-
itor and the HDACase bound to it, thus relieving tran-
scriptional repression. In the absence of NICD (ICN), 
Su(H)/CBFI recruits the blocker protein SMRT and his-
tone deacetylase (HDAC) to repress gene transcription 
[37, 47, 52].

Notch signaling pathway activation
The canonical NOTCH signaling pathway
The canonical Notch signaling pathway is also known 
as the CBF-1/RBP-Jκ-dependent pathway, as depicted 
in Fig. 1. The activation of the Notch signaling pathway 
involves three cleavage events [53–55]: the first cleavage 
site, S1, takes place in the extracellular region between 
the arginine residue at 1654 and the tyramine residue in 
1655. By the action of Furin protease in the Golgi com-
plex, the Notch monomer is cleaved into two subunits: 
the Notch extracellular domain (NEC) and the Notch 
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transmembrane fragment (NTM), which associate non-
covalently through calcium-dependent bonds to form a 
heterodimeric Notch receptor complex located on the 
cell membrane surface. The second cleavage site, S2, is 
located in the extracellular proximal membrane region 
between residues 1710 alanine-1711 valine. When the 
Notch receptor binds to the ligand, it is cleaved into 
two fragments by the action of Metal Loprotease (ML)/
Tumour Necrosis Factor-α converting enzyme (TACE) or 
Kuz, which belongs to ADAM (A Disintegrin and Metal-
loprotease) metalloproteinase family, to release the extra-
cellular fragment. The N-terminal fragment (extracellular 
region) is phagocytosed by ligand-expressing cells, while 
the C-terminal cleavage product is further cleaved at 
the third cleavage site (S3) in the transmembrane region 
(located between residues 1743 glycine and 1744 valine) 
by γ-secretase, presenilin, and various cofactors, to 
release the activated form of Notch protein, NICD (ICN).

Upon NICD (ICN) entering the nucleus and binding 
CSL proteins (CBF1, Su(H), LAG1) through the RAM 
domain and CDC/ankyrin repeats, it recruits the nuclear 

transcriptional activator protein family MAML (mas-
termind-like) to form a ternary complex transcriptional 
activator (NICD-CSL-MAML). Once this complex is 
formed, Notch target genes encoding basic helix-loop-
helix (bHLH) transcription factors such as HES (hairy/
enhancer of split) and HEY (Hey-hairy/enhancer–of–
split related with YRPW motif family members) are acti-
vated. These transcription factors promote the expression 
of downstream genes, thereby promoting cell prolifera-
tion and inhibiting cell differentiation [52, 56]. MAML 
(mastermind-like family members) acetylates histones by 
recruiting histone acetyltransferase 300p (HDAC) [53]. 
The binding of NICD to CSL proteins transforms CSL 
proteins from transcriptional repressors to transcrip-
tional activators, thereby activating the transcription of 
the target gene.

The noncanonical NOTCH signaling pathway
The noncanonical Notch signaling pathway also 
known as the CSL non-dependent pathway involves 
interactions with other signaling pathways that occur 

Fig. 1 Schematic diagram of the canonical Notch signaling pathway. NEC, Notch extra-cellular domain; NTM, membrane-tethered intra-cellular 
domain; ADAM, A Disintegrin, and Metalloprotease; NICD, Notch intracellular domain; MAML, Mastermind; Co-R, Co-Repressors; CSL, CSL from CBF1 
in vertebrates, suppressor of hairless in Drosophila, Lag-1 in Caenorhabditis elegans, RBP-Jκ in mammals
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upstream of the interactions between Notch ICD and 
CSL. The mature Notch receptor located on the cell 
membrane is activated partly by binding to its ligand 
and partly by endocytosed into the cytosol independent 
of the ligand. It then returns to the cell membrane to be 
degraded in the lysosome or activated in the endosome 
[57, 58]. Endosomes are known to contain ADAM and 
γ-secretase [47, 59]. Activation of the atypical Notch 
signaling pathway can be accomplished by binding 
non-typical ligands and does not require the excision 
of Notch receptors [44]. The ANK region of the Notch 
receptor binds to the intracellular zinc finger protein 
Deltex and represses the transcription factor E47.

Notch signaling pathway regulation
At the extracellular level
The regulation of the notch signaling pathway at the 
extracellular level occurs in two distinct ways: firstly, 
through interactions with the extracellular segment of 
Notch, thereby impacting the binding of the normal 
Notch receptor to the ligand and subsequent signal 
transduction, involving factors such as Fringe, Wing-
less, Scabrous, among others. Secondly, active frag-
ments of receptors and ligands are produced via the 
action of metalloproteinases, which disrupt the binding 
of normal Notch receptors and ligands, such as Kuzba-
nian, Fhrin, and similar proteins.

At the intracellular level
At the intracellular level, regulatory molecules are pri-
marily regulated by two ways: proteolysis and protein–
protein interactions. The primary regulatory molecules 
encompass Presenilins protease; Deltex, a protein con-
taining a zinc finger that acts as a negative regulator of 
the Notch signaling pathway; and Numb, a membrane-
bound protein.

At the nucleus level
At the intranuclear level, the expression of genes 
resulting from Notch activation is mainly regulated by 
two intranuclear proteins, Mastermind and Groucho. 
Mastermind, which has been found to bind to specific 
structures in chromatin, can upregulate or downregu-
late gene expression. On the other hand, Groucho, a 
non-basic helix-loop-helix (bHLH) protein, interacts 
with the DNA binding protein bHLH, E(sp1)/HES, 
to synergistically repress transcription. Studies have 
shown that Groucho is capable of binding to histone 
H3 on chromatin, causing transcriptional arrest.

Notch mediates the mechanism of action 
of neuropathic pain
According to the available literature, the Notch signal-
ing pathway may play a role in the induction and main-
tenance of neuropathic pain through three mechanisms: 
activation of glial cells, enhancement of synaptic trans-
mission, and alteration of ion channels (Fig. 2).

Activated neuroglia
Neuroglia can be classified into two primary categories: 
microglia and macroglia (consisting of astrocytes and 
oligodendrocytes) [60]. The involvement of glial cells in 
the development and maintenance of neuropathic pain 
was initially reported in the 1990s [61–64]. Following 
nerve injury, astrocyte activation increases [65], releas-
ing a plethora of factors such as nitric oxide (NO) [66], 
prostaglandins (PGs) [67], excitatory amino acids [68], 
cytokines (like TNF-α and IL-1β) [69] and ATP [70], 
which mediate pain hypersensitivity. Microglia is the pri-
mary immune cell in the central nervous system (CNS) 
and is the first and most critical line of immune-medi-
ated defense. In neuropathic pain cases, microglia at spi-
nal cord level become activated initially [71] and remain 
active for several weeks [72–74]. Activated microglia 
continuously release many pro-inflammatory mediators 
(like IL-1, IL-6, IL12), and express characteristic markers 
(such as CD11b, TLR4, CD14, and complement receptor 
3 associated with the immune response (CR3)), resulting 
in a persistent pain state in the organism.

The Notch-RBP-Jκ signaling pathway has been dis-
covered to regulate microglia polarization, neuroin-
flammation, and neuropathic pain by stimulating the 
translation of IRF8 [75–77]. Gui et  al. [78] found that 
inhibition of the Notch-RBP-Jκ signaling pathway by 
Koumine reduced M1 polarization and inflammation in 
spinal microglia and improved diabetic neuropathic pain 
in rats. Following nerve injury, the Notch receptor com-
bines with its ligand, which activates the Notch signaling 
pathway, and released an active signal fragment NICD 
[79, 80]. The NICD then enters the nucleus and forms a 
transcriptional activation complex with the transcription 
factor RBP-Jκ, which stimulates translation and enhances 
the synthesis of IRF8. This, in turn, contributes to the 
production of pro-inflammatory cytokines, leading to 
rapid microglia polarization [76, 79, 81] and the induc-
tion of neuropathic pain. The Notch pathway interacts 
with many other signaling pathways and studies have 
shown that transcription activator 3 (Stat3) is an impor-
tant transcription factor in A1 astrocytes [82]. Li et  al. 
[83] found that Jagged1, the ligand of the Notch recep-
tor, is expressed with microglia and neurons, while the 
Notch1 receptor is expressed on astrocytes and neurons. 
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Upon nerve injury, microglia are activated and Jagged1 
located in microglia binds to Notch receptors on astro-
cytes, inducing Notch pathway activation. Qian et al. [84] 
found that upon activation of the Notch pathway, the 
activating fragment NICD binds to Stat3 to promote its 
phosphorylation and then enters the nucleus to promote 
the transformation of A1 (pro-inflammatory) astrocytes, 
which plays a significant role in the maintenance of neu-
ropathic pain.

Altering ion channels
The voltage-gated calcium channel (VGCC) plays a sig-
nificant role in the transduction of neuropathic pain. 
The accessory α2δ1 subunit of VGCC is predominantly 
present in the presynaptic terminal and is associated 
with synaptic development and the progression of neu-
ropathic pain through its interaction with TSP secreted 
by astrocytes [85, 86]. Moreover, the α2δ1 subunit inter-
acts directly with N-methyl-D-aspartate (NMDA) recep-
tors to initiate presynaptic NMDA receptor activation 
[87], which is integral to neurotransmitter release, syn-
aptic plasticity and neuropathic pain [88, 89]. Follow-
ing nerve injury, upregulation of α2δ subunit expression 

occurs [90], and α2δ calcium channels are activated by 
conjugation with TSP or NMDA receptors at the presyn-
aptic end of neurons, triggering an influx of Ca2 + and 
increased neuronal excitability. This, in turn, stimulates 
downstream signaling of protein kinase C (PKC) and 
transient receptor potential ankyrin 1 (TRPA1) and tran-
sient receptor potential vanilloid 1 (TRPV1) channel, 
ultimately inducing neuropathic pain.

Several studies have shown that the Notch signalling 
pathway enhances calcium influx in dorsal root ganglia 
(DRG) [91]. Upon nerve injury, activation of the Notch 
signaling pathway involves γ-secretase in the processing 
of Notch receptor [92], the γ-secretase activity requires 
progerin, and its mutants can impede proteolytic pro-
cessing of Notch receptors, resulting in changes in store-
operated Ca2 + entry (SOCE) [93, 94]. SOCE plays a role 
in Ca2 + endocytosis [95, 96], sustains Ca2 + elevation 
after store mobilization, and enhances secretion in cer-
tain cell types [97]. SOCE also activates transcription 
[98], alters synaptic transmission [99], and enhances 
Ca2 + endocytosis [100], leading to heightened neuronal 
excitability, which then triggers a subsequent cascade of 
signaling events that induce neuropathic pain.

Fig. 2 Mechanisms of Notch signaling pathways involved in neuropathic pain
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Enhancing synaptic transmission
Sustained stimulation due to nerve injury and inflam-
mation can result in enhanced synaptic transmission, 
diminished inhibition, and synaptic plasticity [101], along 
with activation of Aδ and C fibers releasing the excita-
tory neurotransmitter, glutamate. Glutamate combines 
with N-methyl-D-aspartate (NMDA) receptors, and 
the decreased activation threshold of NMDA recep-
tors results in altered excitability of sensory neurons in 
the dorsal horn of the spinal cord, giving rise to a persis-
tent rise in the frequency of synaptic activity. This is evi-
denced by increased spontaneous and evoked neuronal 
firing, expanded sensory fields, and ultimately, the devel-
opment of spontaneous pain and nociceptive hyperalge-
sia [102].

Studies have shown that Notch1 affects the expression 
and composition of NMDA receptors and that increased 
Notch1 expression leads to increased glutamatergic 
transmission [21]. Research indicated that Notch1 is 
located in the synapse [22], is upregulated in response 
to neuronal activity, and amplifies neuronal excitation 
and synaptic transmission [103–105]. This amplification 
results in an imbalance of glutamate/GABA transmis-
sion, leading to central sensitization and persistent pain 
after nerve injury.

Discussion
Neuropathic pain is a chronic pain triggered by various 
factors including incisions, autoimmune diseases, nerve 
compression, and channel lesions [106], with complex 
pathological mechanisms. In the past decades, there has 
been a great deal of clinical and basic medical research 
into neuropathic pain. However, most of the potential 
pathological mechanisms are not yet accurately under-
stood owing to the complex and diverse etiology. The 
current clinical treatment for neuropathic pain mainly 
involves analgesic drugs, surgery, spinal cord stimulation 
[107], transcutaneous electrical nerve stimulation [108], 

and other technical means, with a lack of specific treat-
ment targeting the underlying mechanism.

Recently, studies have identified the Notch signaling 
pathway as a new target in neuropathic pain patho-
genesis [69, 83, 109], Notch signaling is activated dur-
ing the development of neuropathic pain, activating 
astrocytes and microglia and causing mechanical allo-
dynia. It is well known that mechanical allodynia is a 
major feature of neuropathic pain. Li et al. [83], and Xie 
et  al. [75], found that dose-dependent administration 
of Jagged1 (a ligand for the Notch receptor) resulted 
in significant activation of both Notch signaling and 
glial cells, inducing mechanical allodynia. Also, Duan 
et al. [40] discovered that the downregulation of Hes1, 
an effector of Notch signaling, attenuated neuropathic 
pain. Moreover, Sun et al. [23], Yang et al. [81], and Qin 
et al. [39] found that DAPT (an inhibitor of Notch sign-
aling) down-regulated Notch expression, inhibited glial 
cell transformation and reversed mechanical allodynia. 
This suggests that JAG-1, Hes-1 and γ-secretase could 
be targets of the Notch signaling pathway. However, 
only DAPT, an inhibitor targeting γ-secretase, has been 
studied, and no inhibitors targeting JAG-1 and Hes-1 
have been reported in the literature.

Current studies have shown that DAPT enters the rat 
or mouse mainly by both intrathecal catheter and intra-
peritoneal injection, targeting the gamma-secretase, 
a key enzyme in the Notch signaling pathway. Studies 
have shown that both modes of administration have 
been studied experimentally in spinal cord tissue or in 
the DRG or ACC. Whether Notch inhibitors that do 
not cross the blood–brain barrier can reduce pain has 
not been reported in the literature. More importantly, 
the results of spinal transcriptome sequencing in our 
previous experimental study showed that Notch signal-
ing pathway was significantly upregulated and Notch1 
gene expression was significantly increased in the SNI 
model, once again confirming that the Notch signaling 
pathway plays a key role in neuropathic pain.

Table 2 Potential therapeutic agents against Notch

Therapeutics Disease Target Reference

Venetoclax breast cancer γ-secretase  [110]

Ciclopirox (CPX) Bladder cancer  [111]

Cucurbitacin B and I Colorectal cancer (CRC)  [112]

RO4929097 Advanced Sarcoma  [113]

BMS-906024 Lung cancer  [114]

dibenzazepine (DBZ) Obesity  [115]

Crenigacestat (LY3039478) Calcific aortic valve disease (CAVD)  [116]

T-cell acute lymphoblastic leukemia (T-ALL)/T-cell lympho-
blastic lymphoma (T-LBL)

 [117]
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Thus, the discovery of the Notch signaling pathway as 
a novel aspect of neuropathic pain pathogenesis and its 
potential targeting holds promise. We have compiled a 
list of potential FDA-approved therapeutic agents tar-
geting Notch for other conditions that may be used for 
neuropathic pain treatment (Table 2).

Future perspective
In this review we systematically describe the mecha-
nisms of Notch signaling pathways in the induction and 
maintenance of neuropathic pain, intimately related to 
excitatory synaptic transmission, neuroglia activation, 
and calcium inward flow, and there may be undiscov-
ered pathogenic mechanisms. Recently, Numerous 
studies on the mechanisms of the Notch signaling path-
way in the development and maintenance of neuro-
pathic pain have revealed possible therapeutic targets. 
At present, most studies have been conducted at the 
animal level. Moreover, drug treatments targeting the 
Notch signaling pathway have only been experimented 
with in other disease models. Therefore, further future 
studies are necessary to be conducted both clinically 
and at a basic level to provide data to support the tar-
geted treatment of neuropathic pain.
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