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Abstract 

Migraine is a common and complex neurological disease potentially caused by a polygenic interaction of multiple 
gene variants. Many genes associated with migraine are involved in pathways controlling the synaptic function and 
neurotransmitters release. However, the molecular mechanisms underpinning migraine need to be further explored.

Recent studies raised the possibility that migraine may arise from the effect of regulatory non‑coding variants. In this 
study, we explored the effect of candidate non‑coding variants potentially associated with migraine and predicted to 
lie within regulatory elements: VAMP2_rs1150, SNAP25_rs2327264, and STX1A_rs6951030. The involvement of these 
genes, which are constituents of the SNARE complex involved in membrane fusion and neurotransmitter release, 
underscores their significance in migraine pathogenesis. Our reporter gene assays confirmed the impact of at least 
two of these non‑coding variants. VAMP2 and SNAP25 risk alleles were associated with a decrease and increase in 
gene expression, respectively, while STX1A risk allele showed a tendency to reduce luciferase activity in neuronal‑like 
cells. Therefore, the VAMP2_rs1150 and SNAP25_rs2327264 non‑coding variants affect gene expression, which may 
have implications in migraine susceptibility. Based on previous in silico analysis, it is plausible that these variants 
influence the binding of regulators, such as transcription factors and micro‑RNAs. Still, further studies exploring these 
mechanisms would be important to shed light on the association between SNAREs dysregulation and migraine 
susceptibility.
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Background
Migraine is a common disabling multifactorial neurologi-
cal disease with a heritability estimated between 30–60% 
[1, 2]. Migraine affects about 15% of the population and 
is three times more prevalent in women [2]. This type 
of primary headache typically causes recurrent attacks 
of unilateral throbbing pain along with other symp-
toms, such as photophobia, nausea, and/or vomiting 
[3]. There are two common migraine subtypes defined 
by the presence or absence of aura [3]. Rare monogenic 
forms of familial hemiplegic migraine are caused by vari-
ants in genes related to neurotransmission (CACNA1A, 
ATP1A2, and SCN1A) [1]. However, many migraine cases 
remain without a genetic cause probably because com-
mon forms of migraine result from the contribution of 
multiple variants with small effects at several loci [4–6]. 
Most of the genes associated with migraine are involved 
in the metabolism, transport, and reception of neuro-
transmitters, possibly causing an imbalance among them, 
and consequently altering the synaptic function [7].

Studies indicate that migraine possibly results from an 
altered state of neuronal excitability driven by enhanced 
responsiveness to stimuli or abnormal processing of sen-
sory information [1, 8]. Regulation of the expression of 
genes involved in the release of neuropeptides/neuro-
transmitters may have implications in migraine suscep-
tibility [9–11]. Additionally, neurovascular mechanisms 
may underlie migraine pathophysiology, as shown by a 
recent genome-wide study, in which risk variants were 
enriched in both vascular and central nervous system 
tissues [12, 13].

Following the first hypothesis, our group explored the 
association of variants in genes belonging to the synap-
tic vesicle machinery and neurotransmission pathway 
through gene candidate association studies [14–16]. 
From the candidate variants identified in these stud-
ies, we have previously performed an in silico analysis of 
non-coding variants using scoring methods and epige-
netic databases, which resulted in the selection of three 
variants within regulatory elements: VAMP2_rs1150 
(3′ UTR), predicted as a target of a miRNA; SNAP25_
rs2327264, (distal enhancer), expected to lie within 

a binding site of a transcription factor; and STX1A_
rs6951030 (proximal enhancer), predicted to affect the 
binding affinity of zinc-finger transcription factors and 
disturb TBL2 gene expression [17]. To note that VAMP2, 
SNAP25 and STX1A genes encode presynaptic proteins 
that belong to the SNARE complex (soluble N-ethyl-
amine-sensitive factor attachment protein receptor), 
which is involved in plasma membrane fusion and neu-
rotransmitter release during synaptic transmission [18]. 
From these non-coding variants, at least VAMP2_rs1150 
was previously associated with attention deficit hyperac-
tivity disorder (ADHD) and working memory in addition 
to migraine susceptibility [16, 19].

In this study, we explored for the first time the effect 
of these three non-coding variants on gene expression, 
which may have implications in migraine susceptibility or 
other complex diseases related to SNARE dysfunction.

Methods
Cell culture
HEK293T cells (ATCC) were cultured in high glucose 
in Dulbecco’s modified Eagle medium (DMEM, Glu-
taMAX™) supplemented with 10% fetal bovine serum 
(FBS) and 1% antibiotic/antimycotic (Gibco, Ther-
moFisher Scientific, Waltham, MA, USA). SH-SY5Y cell 
line (DSMZ) was grown in DMEM GlutaMAX™/Ham’s 
F-12 nutrient mixture supplemented with 10% FBS and 
1% antibiotic/antimycotic (Gibco, ThermoFisher Sci-
entific, Waltham, MA, USA). HEK293T and SH-SY5Y 
cells were maintained at 37  °C in a humidified 5% CO2 
atmosphere.

Plasmids cloning
The plasmids were obtained by cloning the genomic 
sequences (length ~ 1500  bp) flanking the variants 
VAMP2_rs1150 (c.*1590 T > C) and SNAP25_rs2327264 
(c.-64 + 6629  T > C) into the pGL3-promoter vector 
(Promega, Fitchburg, WI, USA). VAMP2 exon 5 (3’ 
UTR) and SNAP25 intron 1 (enhancer) regions were 
PCR amplified from genomic DNA (Table 1), and PCR 
products were purified with Zymoclean Gel DNA 
Recovery Kit (Zymo Research, Irvine, CA, USA) and 

Table 1 Primer sequences used for plasmids’ cloning

The portions regarding pGL3-promotor homologous ends are in uppercase letters

SNP Lenght (bp) Forward primer (5′-3′) Reverse primer (5′-3′)

VAMP2_rs1150 1437 CTG AAC GATGGctgaaatctctggcctcacc GTT GAA GGC TCT Cgttcaagcaattctctgcct

pGL3‑promotor/VAMP2_rs1150 5028 gaattgcttgaacGAG AGC CTT CAA CCC AGT C cagagatttcagCCA TCG TTC AGA TCC TTA TCG 

SNAP25_rs2327264 1538 GAT CTG AAC GAT GGgcagttccctcactcatc GTT GAA GGC TCT Cgaatgccataatagcagctg

pGL3‑promotor/SNAP25_rs2327264 5028 ctattatggcattcGAG AGC CTT CAA CCC AGT C gagggaactgcCCA TCG TTC AGA TCC TTA TCG 
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genotyped by Sanger sequencing. PCR products were 
inserted into the pGL3-promotor vector downstream 
of the firefly luciferase gene by Gibson Assembly (New 
England Biolabs, Ipswich, MA, USA) (Table 1).

The genomic sequence (length of ~ 1500  bp) flank-
ing STX1A_rs6951030 (c.30 + 691A > C) was obtained 
through the NZYTech Gene Synthesis service (NZY-
Tech, Lisbon, Portugal). STX1A intron 1 (promotor) 
was cloned into the pGL3-basic (Promega, Fitchburg, 
WI, USA) upstream of the firefly luciferase gene by 
restriction with Nhel/Xhol (ThermoFisher Scientific, 
Waltham, MA, USA) enzymes.

Sequences were modified by site-directed mutagen-
esis to generate the alternative alleles (normal or risk 
allele) using the Q5 Site-directed mutagenesis kit (New 
England Biolabs, Ipswich, MA, USA), according to the 
manufacturer’s protocol. The following primer pairs 
were used to introduce c.*1590C > T (VAMP2_rs1150 
normal allele), c.-64 + 6629  T > C (SNAP25_rs2327264 
risk allele), and c.30 + 691A > C (STX1A_rs6951030 risk 
allele) variants: forward primer 5′-GTG CTG TGTTt-
TAG ACC CCCC-3′ and reverse primer 5′-CCC CAC 
CTC CAG CAT CTC -3′; forward primer 5′-ATA TGG 
TTCAcATT ACT CAA AGA TG-3′ and reverse primer 
5′-CAA CAA CAG CAA AGA AGA G-3′; and forward 
primer 5′-TTC GGG CAGCcCTG GCT GGCG-3′ and 
reverse primer 5′-AGC CCG AAG GTG GAT AGG TG-3′, 
respectively. All constructs were verified by Sanger 
sequencing.

Cell transfection and dual-luciferase reporter gene assays
HEK293T and SH-SY5Y cells were transiently trans-
fected for 48  h with pGL3-promotor-SNAP25, pGL3-
promotor-VAMP2, pGL3-basic-STX1A, pGL3-control, 
pGL3-promoter, or pGL3-basic plasmids (150 ng; 96-well 
plate) (Promega, Fitchburg, WI, USA) using DreamFect 
Gold (OZ Biosciences, Marseille, Provence-Alpes-Cote 
d’Azur, France), according to the manufacturer’s proto-
col. Co-transfection with the pRL-CMV renilla vector 
(15 ng; 96-well plate) (Promega, Fitchburg, WI, USA) was 
used as an internal control for transfection efficiency in 
a 10:1 molar ratio (firefly:renilla). Dual-luciferase assays 
were performed in 96-well white plates (CELLSTAR® 
plates—µClear® bottom; Greiner Bio-One, Kremsmün-
ster, Austria) containing 100 µL medium (without 1% 
antibiotic/antimycotic) with 1.5 ×  104 HEK293T cells/
mL or 2.5 ×  104 SH-SY5Y cells/mL. After 48 h post-trans-
fection, Synergy Mx Microplate Reader (Agilent, Santa 
Clara, CA, USA) was used to measure the luciferase 
activity with the Dual-Luciferase Reporter System (Pro-
mega, Fitchburg, WI, USA), according to the instructions 
recommended by the manufacturer.

Statistical analysis
Statistical significance of the difference in the luciferase 
activity between normal and risk alleles was deter-
mined using unpaired student´s t-test; the threshold 
of statistical significance was set at p < 0.05. Statistical 
analysis was performed using the IBM SPSS Statis-
tics 26.0 software (IBM, Armonk, NY, USA). Data was 
expressed as mean ± standard deviation (SD) consider-
ing at least four independent experiments and five rep-
licates per experiment.

Results
Recently, variants in the SNARE genes VAMP2, 
SNAP25 and STX1A have been studied as potential 
risk factors in several neurological disorders, includ-
ing migraine [15, 16, 20, 21]. Thus, following our previ-
ous in silico analysis, in which the non-coding variants 
VAMP2_rs1150 (3’ UTR), SNAP25_rs2327264 (distal 
enhancer), and STX1A_rs6951030 (proximal enhancer) 
were predicted to have high regulatory potential, we 
decided to confirm the effect of these candidate vari-
ants on gene expression through reporter gene assays 
[17]. After cloning the DNA sequences surrounding the 
variants, plasmids were transfected into two cell lines, 
one non-neuronal (HEK293T) and one neuronal-like 
(SH-SY5Y), and the luciferase gene reporter activity 
measured by a luminescence assay. The luciferase activ-
ity in transfected cells is approximately proportional 
to the mRNA levels, being used as a tool to study gene 
expression at the transcriptional level [22].

We compared the luciferase activity driven by the dif-
ferent alleles: VAMP2_rs1150 G-allele (risk allele) ver-
sus A-allele (normal allele), SNAP25_rs2327264 C-allele 
(risk allele) versus T-allele (normal allele), and STX1A_
rs6951030 C-allele (risk allele) versus A-allele (normal 
allele). We found that VAMP2_rs1150 G-allele signifi-
cantly decreased luciferase activity by 24% and 31% 
compared to the A-allele in HEK293T and SH-SY5Y 
cells (Fig.  1A, p = 0.022 and p = 0.005, respectively), 
respectively. On the other hand, SNAP25_rs2327264 
C-allele significantly increased luciferase activity 
by ~ 20% compared to the T-allele only in SH-SY5Y cells 
(Fig.  1B, p = 0.006). There were no significant differ-
ences between SNAP25_rs2327264 alleles in HEK293T 
cells (Fig.  1B, p = 0.2999). Therefore, risk alleles in 
VAMP2 and SNAP25 seemed to have opposite effects 
on the regulation of gene expression in neuronal-like 
cells. STX1A_rs6951030 C-allele showed a tendency 
to reduce luciferase activity (~ 40%) in SH-SY5Y cells, 
when compared with the A-allele, but did not reach sta-
tistical significance in either cell line (Fig. 1C, p = 0.900 
and p = 0.335, respectively).
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Fig. 1 Reporter gene assays showed that allelic differences at VAMP2_rs1150 (A) and SNAP25_rs2327264 (B), but not at STX1A_rs6951030 (C), 
influenced luciferase reporter activity. Firefly luciferase activity was normalised to renilla luciferase activity and is shown as a fold change to that 
of pGL3‑promotor or pGL3‑basic (n ≥ 4 for each group) for HEK293T and SH‑SY5Y cells. Data is presented as the mean ± SD. ns, not significant, * 
p < 0.05, ** p < 0.01, unpaired student´s t‑test
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Discussion
In this study, we demonstrated that the potential regula-
tory variants VAMP2_rs1150 and SNAP25_rs2723264 
have indeed an impact on gene expression. VAMP2_
rs1150 G-allele (risk allele) significantly decreased lucif-
erase activity, while SNAP25_rs2723264 C-allele (risk 
allele) increased luciferase activity when compared to 
the normal alleles in SH-SY5Y cells. Luciferase activ-
ity was not significantly affected by SNAP25_rs2723264 
in HEK293T cells, probably because gene regulation is 
tissue and cell-specific. According to the Protein Atlas 
(https:// www. prote inatl as. org/; accessed 03 January 
2023), SNAP25 expression is 46.6 and 0.3 normalized 
transcript per million (nTPM) in SH-SY5Y and HEK293T 
cells, respectively. Thus, it is likely that regulators target-
ing this enhancer are poorly expressed in HEK293T cells, 
explaining the lack of differences in the luciferase activity 
between alleles in this cell line. On the other hand, the 
expression of VAMP2 and possibly of its gene regulators 
is more uniform and broader between cell types (37.8 and 
36 nTPM in SH-SY5Y and HEK293T cells, respectively). 
Amongst the three genes, STX1A is the one with the low-
est expression in these cell lines (22.5 and 3.9 nTPM in 
SH-SY5Y and HEK293T cells, respectively), which may 
explain the lack of statistical significance in our assays. 
Nevertheless, the results of the reporter gene assays pro-
vide evidence to support the effect of at least two non-
coding variants here analysed. In addition, it would be 
interesting to explore the synergistic effect between these 
common variants and other variants located within the 
same regulatory elements.

Interestingly, our functional data partially support our 
previous in silico analysis [17]. VAMP2_rs1150 was our 
top candidate variant, with 7 scoring methods indicating 
deleteriousness, while SNAP25_rs2723264 and STX1A_
rs6951030 were predicted to have similar potential to be 
deleterious (3 scoring methods, differing by a few deci-
mals in the sum parameter) [17].

A previous study from our group has shown a risk 
association of VAMP2_rs1150 G-allele with migraine 
(p = 0.024) that was not statistically significant after 
Bonferroni correction (OR = 1.36; p = 0.068) [15]. Nev-
ertheless, our reporter gene assay point to a functional 
role of this variant in gene expression. VAMP2_rs1150 
expression quantitative trait loci (eQTLs) data suggested 
that the variant targets VAMP2 expression in human 
brain tissues, while bioinformatics tools predicted the 
variant region as a target of hsa-mir-5010-3p micro-
RNA [17]. Similarly, SNAP25_rs2327264 CT genotype 
showed a borderline association with migraine suscep-
tibility (OR = 2.28; p = 0.003) [15]. However, no allele 
association was identified likely due to the small sample 
size, particularly the number of CC genotype subjects 

(N = 12). In our study, the reporter gene assays showed 
that SNAP25_rs2327264 C-allele influences gene expres-
sion. No eQTLs data suggested that SNAP25_rs2327264 
targets its expression, yet this region was expected to be 
a target of ONECUT2 transcription factor [17]. Regard-
ing STX1A_rs6951030, this variant was significantly 
associated with migraine (OR = 1.52; p = 0.006) in a pre-
vious case–control study in the Portuguese population 
[16] but not in a recent GWAS study [23]. In addition, 
it was reported an association between migraine and 
a haplotype that includes STX1A_rs6051030 [20, 21]. 
Nevertheless, our previous bioinformatics study pre-
dicted STX1A_rs6951030 (proximal enhancer) to affect 
the binding affinity of transcription factors from the 
zinc-finger protein family, namely ZNF423, and eQTLs 
data suggested that it disrupts TBL2 gene expression 
in brain tissues [17]. TBL2 gene encodes transducin 
(beta)-like 2 (TBL2), an ER transmembrane protein 
involved in stress-signalling and cell survival through 
protein synthesis regulation [24, 25]. As mentioned 
before, our functional assays were not able to support 
STX1A_rs6951030 impact on gene expression, possibly 
due to a low expression of STX1A and its gene regula-
tors in the cell lines tested.

The genes studied here encode for synaptobrevin-2 
(or vesicle-associated membrane protein-2; VAMP2), 
25-kD synaptosome-associated protein (SNAP25), and 
syntaxin-1A (STX1A) proteins; all belonging to the 
SNARE complex that controls the docking of synaptic 
vesicles and potentiates presynaptic membrane fusion 
[18]. These proteins also interact with other elements 
of the exocytotic machinery and ion channels involved 
in the regulation of presynaptic action potentials and 
neurotransmitter release [18]. Several studies indicated 
that abnormal expression, risk genetic variants, or dys-
function of SNARE proteins are present in various neu-
rological diseases, possibly contributing to abnormal 
neurotransmission and synaptic dysfunction [18]. In 
line with our findings, VAMP2 expression was found to 
be reduced in animal models or patients’ brain tissues of 
Parkinson [26], epilepsy [27], and dementia [28]. As pro-
posed in vascular dementia, VAMP2_rs1150 risk allele 
may have a potential role in synaptic decline and vascu-
lar alterations [28]. In these same studies, SNAP25 and 
STX1A expression was decreased, in opposition to our 
results of the SNAP25_rs2327264 risk allele. Neverthe-
less, our previous study did not find data suggesting that 
SNAP25_rs2327264 target its expression [17], so we can-
not speculate further. Migraine is considered a brain state 
of altered excitability, therefore, changes in SNARE gene 
expression might alter the control of the synaptic vesicle 
exocytosis and consequently unbalance the release of the 
neuropeptides and neurotransmitters [9].

https://www.proteinatlas.org/
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Interestingly, an in  vitro study demonstrated that 4‐
aminopyridine (potassium channel inhibitor) increased 
the rate and extent of exocytosis, and desynchronised 
neurotransmitter release by prolonging local calcium 
availability in cellular models of VAMP2 pathogenic 
variants [29]. This compound has been indicated for the 
symptomatic treatment of multiple sclerosis, cerebellar 
ataxias, and Lambert–Eaton and congenital myasthenic 
syndrome [30]. Thus, suggesting that 4‐aminopyridine 
would be a highly promising treatment for patients with 
SNAREopathies presenting an impaired neurotransmit-
ter release.

In conclusion, our reporter gene assays confirmed the 
effect of two non-coding variants in the SNARE genes 
VAMP2 and SNAP25. In addition to the previous in sil-
ico analysis of regulatory elements, these results suggest 
that these non-coding variants may have implications in 
migraine susceptibility. Therefore, it would be interest-
ing to understand if unbalancing the expression of genes 
encoding components of the synaptic vesicle machinery 
may disrupt the exocytosis of neuropeptides/neurotrans-
mitters acting on the nervous system and blood vessels. 
Although our findings provide novel insights into the 
impact of non-coding variants and gene regulation of 
SNARE proteins, further studies are needed clarify the 
link between SNAREs dysregulation and migraine risk. 
Furthermore, our study calls attention to the importance 
of analysing non-coding variants, which are continuously 
being demonstrated to play an important role in suscep-
tibility and complex neurological disorders.
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