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Abstract 

Background The aberrance of gray matter morphology in migraineurs has been widely investigated. However, it 
remains largely unknown whether there are illness duration-related hierarchical changes in the gray matter structure.

Methods A total of 86 migraine without aura (MwoA) patients and 73 healthy controls were included. The Voxel-
Based Morphometry approach was utilized to compare the gray matter volume (GMV) differences between MwoA 
patients and healthy controls. The Structural Covariance Network analysis was conducted to quantify the cross-
regional synchronous alterations of gray matter structure in MwoA patients. The Causal Structural Covariance Network 
analysis was performed to describe the progressive and hierarchical changes in the gray matter network of patients in 
the pathological progression of migraine.

Results MwoA patients had duration-stage related GMV hypertrophy in the left parahippocampus, as well as syner-
gistic GMV aberrance in the parahippocampus and the medial inferior temporal gyrus and cerebellum. Moreover, the 
GMV alteration of the parahippocampus, and the surrounding hippocampus, amygdala, and bilateral anterior cerebel-
lum, preceded and causally influenced the morphological changes of lateral parietal-temporal-occipital gyrus, as well 
as the motor cortex and prefrontal gyrus with the increasing illness duration in MwoA patients.

Conclusion The current study indicated that gray matter structural alterations in the medial inferior temporal gyrus, 
especially the parahippocampus, is a critical pathological characteristic in MwoA patients, which drives the gray mat-
ter structure alteration of other regions. These findings provide further evidence for understanding the progressive 
gray matter morphological changes in migraine and may facilitate the development of neuromodulation therapies 
targeting this procession.
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Introduction
Migraine is a chronic paroxysmal neurological disor-
der manifested as recurring episodes of headache, often 
accompanied by various neurological and systematic 
symptoms [1]. Depending on whether the attack is pre-
ceded or accompanied by focal symptoms such as visual 
disturbances, tingling and numbness in the face, and con-
fusion, the migraine is classified as migraine with and 
without aura [2]. As estimated in the latest epidemiologi-
cal survey, the global prevalence of migraine reached up 
to 14–15% [3], with over 70% of cases being migraine 
without aura (MwoA) [4]. Its widespread prevalence, and 
associated disability, impose a range of negative and sub-
stantial effects on individuals and society [4, 5].

Despite the tremendous burdens of migraine, knowl-
edge regarding its pathophysiology remains very limited, 
which makes it especially challenging to the objective 
diagnosis and precise treatment. For instance, the cur-
rent diagnosis of migraine is based on the patient’s 
medical history and nonspecific physical examination, 
which relies heavily on the physician’s experience [2, 6]. 
To address this issue, there has been a growing consen-
sus to identify measurable biomarkers associated with 
the migraine process so as to detect individuals at risk 
for the disorder and facilitate the development of novel 
interventions [7]. Magnetic resonance imaging (MRI) has 
provided critical insights into migraine pathogenesis and 
set the stage for the development of imaging-based bio-
markers [8, 9]. Accumulating structural MRI studies have 
been performed in migraine patients and reported mor-
phological alterations of the brain at both the regional 
and network levels [10]. Alterations of gray matter 
structure in the temporal gyrus, prefrontal gyrus, sub-
cortex region, etc., have been reliably detected and rep-
licated across cohorts worldwide [11–14]. Furthermore, a 
proof-of-concept study utilized the structural brain MRI 
measure to develop classifiers that accurately differenti-
ated chronic migraineurs from episodic migraineurs and 
healthy subjects [15]. However, these significant find-
ings were achieved based on the cross-sectional data and 
could hardly reflect the temporal and causal character-
istics of morphological alterations in the gray matter of 
migraine patients. It remains largely unknown whether 
there are illness duration-related hierarchical changes in 
the gray matter structure (i.e., whether the disruption in 
one region is secondary to that in another) of migraine 
patients.

Granger causality (GC) analysis is a widely used tech-
nique for time-series data [16]. It enables the tracking of 
information flow within the brain by detecting whether 
neural activity in one region precedes and allows for the 
prediction of activity in another region [17]. Generally, 
GC analysis is applied to 4D functional MRI instead of 

structural MRI data since it lacks necessary time-series 
information. Whereas, if morphological data are ranked 
according to the information of disease progression and 
duration and are given temporal information, GC analy-
sis can be performed on these sequential data to assess 
the cross-region causal relationship of structural brain 
alterations. This analysis strategy was called Causal 
Structural Covariance Network (CaSCN) [18]. Here, we 
aimed to utilize CaSCN to describe the illness duration-
related hierarchical changes in the gray matter structure 
of migraineurs, thereby providing a progressive perspec-
tive for understanding brain structural alterations in 
migraineurs.

Since MwoA is the most common type of migraine [4], 
the present study focused on the progressive alterations 
in the gray matter structure of MwoA patients. First, the 
Voxel-Based Morphometry (VBM) approach was utilized 
to compare the gray matter volume (GMV) differences 
between MwoA patients and healthy controls (HCs), 
followed by the subgroup comparison of patients at dif-
ferent stages of illness duration. The purpose of these 
comparative analyses was to identify the key regions with 
significant morphological alterations associated with dif-
ferent stages of MwoA. Subsequently, Structural Covari-
ance Network (SCN) analysis was performed based on 
the identified key regions to quantify the cross-regional 
synchronous alterations of gray matter structure in the 
pathological process of migraine. Finally, the CaSCN 
method was utilized to describe the progressive changes 
in the gray matter structure in MwoA patients as the 
duration increased. We hypothesized that the GMV of 
MwoA patients would gradually change with increasing 
illness duration and that these changes may be causally 
and hierarchically correlated.

Materials and methods
Participants
Eighty-six MWoA patients and seventy-six HCs were 
enrolled. The patients were recruited from the outpa-
tients of the Third Affiliated Hospital of Chengdu Univer-
sity of Traditional Chinese Medicine and were diagnosed 
by a neurologist according to the 2nd Edition Interna-
tional Classification of Headache Disorders for Migraine 
Without Aura [19]. Patients were included if they fulfilled 
the following criteria: 1) between 17 to 45  years old, 2) 
right-handed, 3) suffered from migraine symptoms for 
at least six months, 4) had at least one attack per month 
in the past three months, 5) were not taking any anal-
gesics treatment for migraine in the last three months. 
Patients were excluded if they: 1) were diagnosed with 
a secondary headache caused by traumatic brain injury, 
hypertension, or any other organic reasons, 2) comorbid 
with any other psychoneurological disorders or had any 
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severe primary illnesses, 3) had any other chronic pain 
conditions, 4) had contraindication of MRI scanning, e.g., 
claustrophobia.

Seventy-six right-handed, gender- and age-matched 
HCs were recruited by advertisements from the campus 
of Chengdu University of Traditional Chinese Medicine. 
These participants were free from any chronic pain disor-
der or any other organic or functional diseases.

Both MwoA patients and HCs underwent comprehen-
sive history taking, physical examination, and routine 
laboratory examinations. Subjects with abnormal test 
results were excluded.

Symptoms evaluation
The included MwoA patients were required to record 
headache diaries to evaluate the clinical symptoms in 
the one-month observation period. The headache dia-
ries contained two dimensions, the day with migraine 
attacks and the intensity of the headache that was evalu-
ated with the 0–10 Visual Analogue Scale (VAS) score. 
Subsequently, the monthly migraine days were calculated 
by summing the number of days with migraine attacks 
in the observation period, while the headache intensity 
was assessed by the averaged VAS score of each migraine 
attack. Additionally, the Self-rating Anxiety Scale [20] 
and Self-Rating depressive Scale [21] were utilized to 
evaluate the emotional conditions of MwoA patients.

The demographic characteristics of MwoA patients 
and HCs were compared via SPSS 20.0 software (SPSS 
Inc. USA) with a significance threshold of p < 0.05 (two-
tailed). The clinical symptoms of patients were described 
with mean ± standard deviation.

MRI data acquisition
MRI data of patients and HCs were acquired with the 
same 3.0 T MRI scanner (Siemens AG, Germany) at West 
China Hospital of Sichuan University. The high-resolu-
tion 3-Dimensional T1-Weighted Imaging was obtained 
with the axial fast spoiled gradient recalled sequence. The 
scanning parameters were as follows: repetition time/
echo time = 1900/2.26  ms, slice thickness = 1  mm, the 
field of view = 256 × 256  mm2, and matrix size = 256 × 256. 
MwoA patients were migraine-free for at least 72 h prior 
to the MRI scan.

Data preprocessing
The T1 image data was preprocessed with SPM12 (http:// 
www. fil. ion. ucl. ac. uk/ spm) and CAT12 (http:// www. 
neuro. uni- jena. de/ cat) toolboxes. Specifically, the data 
preprocessing procedure contained four steps: 1) nor-
malizing T1 images to the standard Montreal Neurologi-
cal Institute (MNI) space and segmenting images into the 
gray matter, white matter, and cerebrospinal fluid using 

DARTEL algorithm [22]; 2) estimating sample homoge-
neity and visually checking the images whose heteroge-
neity were greater than mean ± two standard deviations; 
3) calculating the total intracranial volume (TIV) for each 
subject based on the unsmoothed images; 4) smooth-
ing spatial images with an 8 mm Gaussian kernel of full-
width at half maximum following the operation manual 
recommended.

VBM analysis
The VBM analysis was utilized to quantify the GMV of 
the brain in each subject. The whole-brain GMV differ-
ence between MwoA patients and HCs was compared 
with the two-sample t-test, using age, gender, and TIV 
as covariates. The significance threshold was set to voxel 
p < 0.001 and cluster p < 0.05, Gaussian Random Field 
(GRF) correction.

To map the progressive patterns of GMV alteration in 
MwoA patients, we utilized stage-specific procedures 
[18, 23] to divide patients and make a subgroup analysis. 
Given the distribution of illness duration and the cor-
responding number of patients, these patients were cat-
egorized into two subgroups (Stage 1: the short duration, 
6 ≤ illness duration < 60  months; Stage 2: the long dura-
tion, illness duration ≥ 60  months). GMV of patients in 
these two subgroups was compared to those of HCs using 
the two-sample t-tests, respectively. As well age, gender, 
and TIV were regressed as covariates in these analyses. 
The significance thresholds for subgroup comparisons 
were set at voxel p < 0.001 and cluster p < 0.05, GRF cor-
rection, which was consistent with the between-group 
comparison of all patients and HCs [24].

Subsequently, we extracted the average GMV from 
each group of subjects (patients with short duration, 
patients with long duration, and HCs) in the regions 
where GMV was altered in MwoA patients and then 
compared them with the analysis of covariance in SPSS 
20.0, followed by post-hoc analysis between any two sub-
groups. The significance threshold was set at p < 0.05, 
Bonferroni correction.

To further evaluate the associations between GMV 
alterations and illness duration as well as symptom sever-
ity in MwoA patients, we conducted the partial correla-
tion analysis between GMV of these altered regions and 
illness duration and clinical symptoms, with age, gender, 
and TIV as covariates. The significant threshold was set 
to p < 0.05, Bonferroni correction.

SCN analysis
In order to investigate the cross-regional synchronization 
of GMV alterations in MwoA patients, we conducted 
the SCN analysis seeded with regions that showed sig-
nificant differences in GMV between MwoA patients and 

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
http://www.neuro.uni-jena.de/cat
http://www.neuro.uni-jena.de/cat
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HCs. Specifically, the averaged GMV of these regions 
was first extracted from each patient and regarded as the 
regressor. Then, a multi-regression model-based linear-
interaction analysis was conducted in DPARSF 4.5 [25] 
(http:// rfmri. org/ DPARSF) to detect the SCN alterations 
in MwoA patients relative to the HCs. Age, gender, and 
TIV were modeled as covariates in the multi-regression 
analyses. Similar to the recent study [26], The statistical 
threshold was set to p < 0.05, with false discovery rate 
(FDR) correction.

CaSCN analysis
To investigate whether there is a causal relationship 
between GMV alterations in different brain regions over 
time in MwoA patients (i.e., whether the damage in one 
region precedes that in another), the seed-based CaSCN 
analysis was introduced here. As shown in recent studies 
[23, 26, 27], CaSCN had the ability to assess the cross-
region causal relationship of structural brain alterations 
and describe the dynamic and gradual perspective of 
brain structural alterations with duration increase. In 
detail, the GMV data of all patients were first sequenced 
according to the illness duration from low to high, and 
thereby granted “time‐series” information to the cross‐
sectional data for describing the progressive property of 
patients. Subsequently, GC analysis was applied to this 
pseudo-time-series data to construct CaSCN. Similar to 
the SCN analysis, the seed region of CaSCN was selected 
from the results of the GMV comparison between MwoA 
patients and HCs mentioned previously. The averaged 
GMV values within the seed were extracted from the 
sequenced morphological data and constituted a pseudo 
time series. Then, the seed-to-voxel signed‐path coeffi-
cient GC analysis was performed using REST 1.8 (http:// 
www. restf mri. net), [28] with age, gender, and TIV as 
covariates. Considered that the key assumption of GC 
analysis is the stationarity of data [29], Kwiatkowski-
Phillips-Schmidt-Shin test was performed prior to the 
GC analysis, to ensure the stationarity of the pseudo time 
series of each voxel. As defined [30], if the current value 
of time course “Y” could be more accurately estimated 
by the combination of the past value of time courses 
“X” and “Y” than the past value of “Y” alone, “X” has 
Granger causal influence on Y. Accordingly, the CaSCN, 
by applying GC analysis to the pseudo‐time‐series mor-
phometric data, could estimate the causal effects of mor-
phometric alteration of a region on the others. A positive 
GC value indicated that the same GMV changes in the 
regions lagged behind the seed alteration, while a nega-
tive GC value denoted that the region with an opposite 
change lagged behind the seed alteration. To present the 
GC values with statistical parameters, the original GC 
map was transformed to a z-score map, and then the final 

results were reported under the threshold of p < 0.05, 
FDR correction, with a combination of z > 2.3 and |GC 
value|> 0.16 [18].

To further investigate the bidirectional causal effects 
among the regions obtained from seed-based CaSCN 
analysis, we also performed the region-of-interest (ROI) 
to ROI GC analysis. The ROIs were defined as 8  mm 
spheres centered on the peak coordinates of these 
regions. The signed-path coefficient GC analysis was 
performed to generate an ROI-wise causal network 
that characterized causal relationships among ROIs. To 
keep consistency with the voxel-wise CaSCN analysis, 
the same threshold was set at |GC value|> 0.16. Finally, 
based on the Brain Connectivity toolbox (https:// www. 
nitrc. org/ proje cts/ bct/), the binary out-degree and in-
degree values of each ROI were computed separately 
to identify the causal target or causal source levels of 
ROIs. Specifically, the in-degree value of an ROI rep-
resented the sum of the number of paths projected to 
the ROI, while the out-degree value of a node referred 
to the sum of the number of paths projecting to other 
nodes. The node degree was calculated with the value of 
out-degree + in-degree.

Results
Since 3 HCs were excluded for the motion artifacts of the 
T1 image, a total of 86 MwoA and 73 HCs were included 
in the data analysis. The demographic characteristics of 
participants and the clinical symptoms of the patients are 
shown in Table 1. There were no statistical differences in 
age, gender, body mass index, and TIV between MwoA 
patients and HCs.

Overall and stage‑specific GMV alterations
Compared to HCs, MwoA patients manifested 
increased GMV in the left parahippocampus (PHG.L) 
(Peak t = 4.606, Peak MNI coordinate: X = -24, Y = -30, 
Z = -24, cluster size = 533) under the threshold of voxel 
p < 0.001, cluster p < 0.05, GRF correction (Fig. 1A). Simi-
larly, MwoA patients with long duration (n = 44) also 
showed GMV hypertrophy in the PHG.L (Peak t = 4.264, 
Peak MNI coordinate: X = -15, Y = -27, Z = -24, cluster 
size = 430) than HCs under the same threshold (Fig. 1B). 
No significant difference of whole-brain GMV was 
detected between MwoA patients with short duration 
(n = 42) and HCs.

There were significant differences in GMV in the 
PHG.L among the three subgroups (F = 14.903, p < 0.001). 
Specifically, patients with long duration had higher GMV 
than HCs and patients with short duration (long duration 
Vs. HCs, t = 6.058, p < 0.001; long duration Vs. short dura-
tion, t = 4.044, p < 0.001), while no significant difference 

http://rfmri.org/DPARSF
http://www.restfmri.net
http://www.restfmri.net
https://www.nitrc.org/projects/bct/
https://www.nitrc.org/projects/bct/
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of GMV between HCs and patients with short duration 
was found (t = 0.995, p = 0.322) (Fig. 1C).

The result of correlation analysis demonstrated a 
significantly positive correlation between GMV of 
the PHG.L and disease duration (r = 0.341, p = 0.001) 
(Fig.  1C), instead of with the monthly migraine days 
(r = -0.195, p = 0.071) or headache intensity (r = -0.084, 
p = 0.445) in MwoA patients.

Synchronous GMV alterations with the PHG.L
The RIO-based SCN analysis demonstrated a synergis-
tic GMV increase between the PHG.L and the bilateral 
medial inferior temporal gyrus (including the hippocam-
pus, parahippocampus, and fusiform gyrus) and the bilat-
eral anterior cerebellum (including the culmen, cerebellar 
regions 4, 5, and 6). Specifically, two clusters survived 
under the threshold of pFDR < 0.05. The peak coordinate of 
cluster 1 is located at the PHG.L (Peak MNI coordinate: 
X = 24, Y = -29, Z = -29; cluster size = 6828). The peak 
coordinate of cluster 2 is located at the right superior cer-
ebellum (Peak MNI coordinate: X = -24, Y = -30, Z = -24; 
cluster size = 4802) (Fig. 2).

Causal effects of GMV alteration in the PHG.L
The results of ROI-based CaSCN demonstrated negative 
GC from the PHG.L to the right supplementary motor 
area (SMA), left middle and superior frontal gyrus, left 
middle temporal gyrus (posterior and anterior part), and 
bilateral amygdala/anterior parahippocampus (AMY/
aPHG), thalamus, inferior occipital gyrus, angular 
gyrus, precuneus, and anterior cingulate gyrus (Fig. 3A, 

Table  2), as well as positive GC from the PHG.L to the 
bilateral cerebellum, left precentral gyrus, left postcen-
tral gyrus, right inferior orbitofrontal gyrus (IOFG), right 
temporal pole, and left middle temporal gyrus (tempo-
rooccipital part) (Fig. 3B, Table 2) under the threshold of 
p < 0.05, FDR correction.

Bidirectional causal effects in the ROI‑wise CaSCN
As shown in Fig.  4, there is a complicated causal con-
nectivity among these 23 ROIs. Specifically, the links 
between the PHG.L to right SMA, left AMY/aPHG, and 
bilateral thalamus were the edges with the highest nega-
tive GC value, while the links between PHG.L to IOFG.R, 
left postcentral gyrus, and bilateral cerebellum were the 
edges with highest positive GC value (Fig.  4A, B). The 
PHG.L, cerebellum, and AMY/aPHG were the highest 
out-degree nodes, projecting mainly to the other nodes, 
while the right SMA, left precentral gyrus, and right 
IOFG were the highest in-degree nodes, receiving causal 
effects from others. The right temporal pole, left middle 
temporal gyrus, bilateral thalamus, left postcentral gyrus, 
and bilateral precuneus were the transition nodes, show-
ing balanced in-degree and out-degree (Fig. 4C).

Discussion
Adopting VBM, SCN, and CaSCN methods, the cur-
rent study found that MwoA patients had duration-stage 
related GMV hypertrophy in the PHG.L, as well as syn-
ergistic GMV aberrance in the PHG.L and the medial 
inferior temporal gyrus and cerebellum. Moreover, the 
GMV alteration of the PHG.L, and the surrounding hip-
pocampus, amygdala, and bilateral anterior cerebellum, 

Table 1 Demographic characteristics and clinical symptoms of MWoA patients and HCs

Abbreviations: MwoA Migraine without aura, HCs Healthy controls, BMI Body mass index, TIV Total intracranial volume, SAS Zung self-rating anxiety scale, SDS Zung 
self-rating depression scale

MwoA HCs Statistics p‑value

Gender (Male/Female) 18/68 23/50 χ2 = 2.308 p = 0.129

Age (Year) 21.93 ± 2.25 21.62 ± 0.97 t = 1.036 p = 0.302

BMI 20.61 ± 2.40 20.83 ± 1.62 t = -0.693 p = 0.489

TIV 1422.35 ± 119.29 1439.10 ± 135.95 t = -0.827 p = 0.409

Duration (Month) 65.06 ± 35.23 / / /

Monthly migraine days 5.87 ± 5.21 / / /

Headache intensity 5.81 ± 1.80 / / /

SAS 45.19 ± 8.74 / / /

SDS 45.22 ± 10.47 / / /

Concomitant symptoms (Yes/No)

 Photophobia 53/34

 Phonophobia 57/30

 Nausea 48/39

 Vomiting 14/73



Page 6 of 12Yin et al. The Journal of Headache and Pain           (2023) 24:53 

preceded the morphological changes of others and rep-
resented the initiation of structural alterations in MwoA 
patients. These findings were consistent with our hypoth-
esis that gray matter structure in MwoA patients showed 
causal and hierarchical alterations originating in the 
medial inferior temporal gyrus, extending through the 
lateral parietal-temporal-occipital gyrus, and eventually 

penetrating to the motor area and prefrontal gyrus with 
the illness duration increased (Fig. 5).

The hippocampus/parahippocampus is a significant 
region of interest in migraine research, as it is involved 
in pain processing, pain-related attention and memory, 
and stress response [31]. A growing number of studies 
have identified the structural, functional and metabolic 

Fig. 1 Alterations of GMV in MwoA patients. A indicates differences in GMV between MwoA patients and HCs. B shows differences in GMV 
between MwoA patients with long duration and HCs. C is the group difference of GMV of the cluster in Fig. 1A among three subgroups and the 
correlation of GMV and illness duration in MwoA patients. Abbreviation: MwoA migraine without aura, HCs healthy controls, GMV gray matter 
volume, L left, R right, GRF Gaussian Random Field

Fig. 2 Synchronous GMV alterations along with the PHG.L in MwoA patients. Abbreviation: L left, R right, FDR false discovery rate
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Fig. 3 Causal effects of GMV alteration in the PHG.L. A illustrates the regions where the PHG.L had negative GC effects on. B shows the regions 
where the PHG.L had positive GC effects on. Abbreviation: L left, R right, FDR false discovery rate

Table 2 Causal effects of GMV alteration in the PHG.L

Abbreviation: L Left, R Right, Bi Bilateral, MNI Montreal Neurological Institute

Regions Abbreviations MNI coordinates
(x, y, z)

z value Cluster size

R Supplementary motor area SMA.R 15, 11, 63 -11.6 3858

L Middle frontal gyrus MFG.L -38, 36, 26 -9.74 1507

L Inferior occipital gyrus/angular gyrus IOG/ANG.L -41, -74, -6 -9.48 3900

R Angular gyrus ANG.R 56, -56, 26 -9.21 2723

Bi Thalamus THA.Bi -11, -17, 11 -9.18 2528

R Inferior occipital gyrus IOG.R 44, -71, -8 -8.5 917

L Superior frontal gyrus SFG.L -17, 24, 59 -8.07 742

L Amygdala/anterior parahippocampus AMY/aPHG.L -20, 0, -30 -8.06 1460

L Middle temporal gyrus (posterior part) pMTG.L -53, -21, -9 -7.86 1121

L Rolandic operculum ROL.L -41, -33, 15 -6.86 1319

L Precuneus PCUN.L -11, -57, 14 -6.8 1895

L Middle temporal gyrus (anterior part) aMTG.L -57, 0, -23 -6.56 1013

R Precuneus PCUN.R 8, -54, 53 -6.18 3579

Bi Anterior cingulate gyrus ACG.Bi -5, 41, 8 -5.62 709

R Inferior temporal gyrus ITG.R 63, -23, -18 -5.49 681

R Amygdala/anterior parahippocampus AMY/aPHG.R 21, -9, -24 -5 513

R Temporal pole TPO.R 48, 8, -29 6.14 640

L Precentral gyrus PreCG.L -41, 11, 41 8.18 1146

Bi Cerebellum CRB.Bi -38, -66, -41 8.68 13,398

L Middle temporal gyrus (temporooccipital part) tMTG.L -56, -57, 2 9.2 586

R Inferior orbitofrontal gyrus IOFG.R 47, 30, -5 9.66 821

L Postcentral gyrus PostCG.L -24, -39, 61.5 9.84 1198
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Fig. 4 Causal connectivity among the ROI-wise CaSCN. A and B characterize the ROI-wise CaSCN, which are generated in the bidirectional 
signed-path coefficient GC analysis with the 3D brain networks and asymmetric matrix, respectively. C presents the node degree value of each ROI. 
Abbreviations: L left, R right, GC Granger causality, abbreviations for brain regions are listed in Table 2

Fig. 5 The pattern of GMV progressive alteration in MwoA patients
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abnormalities of the hippocampus/parahippocampus 
in both migraine patients and models [32–35]. Utilizing 
the VBM method, previous studies have demonstrated 
aberrant gray matter morphology in the hippocampus/
parahippocampus in MwoA patients [35–37], as well as a 
more significant GMV increase in this region in patients 
with episodic migraine compared to those with chronic 
migraine [38]. Our current study added to this litera-
ture by demonstrating a significant GMV increase in the 
PHG.L in MwoA patients. Additionally, the subgroup 
analysis revealed GMV hypertrophy in PHG.L in patients 
with longer disease durations, as opposed to shorter 
ones. The correlation analysis found a significant, but 
not very strong correlation between gray matter changes 
and illness duration rather than the number and sever-
ity of headache attacks. These findings may suggest that 
migraine-related increases in parahippocampal volume 
are more likely to be a result of long illness duration or 
a greater number of episodes rather than a pre-existing 
vulnerability factor. This inference was confirmed in a 
small-sample longitudinal study [13], showing greater 
parahippocampus and temporoparietal gyrus alterations 
in individuals with a long disease duration and higher 
baseline disease activity at the four-year follow-up. Fur-
thermore, research evidence from randomized controlled 
trials suggested that structural and functional alterations 
in the hippocampus/parahippocampus of MwoA were 
reversible [39–41]. For instance, Liu J. et al. [39] reported 
that some migraineurs exhibited significant clinical 
improvements and reduction in GMV of the abnormally 
enlarged amygdala/parahippocampus, indicating that 
hippocampal hypertrophy may be a state marker associ-
ated with prolonged duration or recurrence of migraine, 
rather than a permanent scar.

The SCN analysis was designed to explore the synchro-
nous coordinated structure of the entire brain in gray 
matter morphology, as opposed to focusing on a par-
ticular region. This approach provides a valid method to 
investigate the zero time-lagged conjugating structures 
among the interconnected regions of the brain [31]. 
The results of the SCN analysis revealed synchronous 
changes in GMV among the parahippocampus and its 
neighboring regions, such as the hippocampus, amyg-
dala, lingual gyrus, and cerebellum, rather than distant 
brain regions in MwoA patients. It suggested that the 
morphological aberrations in MwoA patients were highly 
concentrated, with the most pronounced synchronous 
alterations in the medial inferior temporal gyrus and 
cerebellum. These findings were highly concordant with 
the results of our latest coordinate-based mate analysis 
[8]. In this mate analysis, we enrolled 31 original stud-
ies and detected that MwoA patients had increased gray 
matter in the left amygdala, bilateral parahippocampus, 

right hippocampus, and left lingual gyrus. Furthermore, 
some other studies also found that MwoA patients mani-
fested altered synchronization of functional activity in 
the medial temporal gyrus [42, 43] and that interventions 
such as transcutaneous auricular vagus nerve stimula-
tion [44] and acupuncture [45] had significant modulat-
ing effects on these disturbed functional activity patterns 
of patients. This phenomenon suggested that there were 
consistent structural–functional variations in the medial 
inferior temporal gyrus in MwoA patients and that the 
cortical plasticity in the medial inferior temporal gyrus 
might be an important neuropathological feature of 
MwoA. Additionally, these regions, especially the para-
hippocampus, should be considered when developing 
neuromodulation methods for MwoA.

Another principal finding of the current study was that 
the parahippocampus might be a "driving core" of gray 
matter alterations in the MwoA. Namely, the hypertro-
phy of the parahippocampus preceded and predicted gray 
matter changes in other regions. It is well known that 
longitudinal study is a preferred approach for assessing 
morphological changes in the brain over time. However, 
acquiring data from the same subject over a prolonged 
period is often challenging. Therefore, the CaSCN 
method was developed as a surrogate measure of disease 
progression, incorporating information on the duration 
of the illness to produce a pseudo time series of disease 
progression and lifespan data [18]. The ability of the 
CaSCN method in capturing temporal variations of brain 
structure has been well validated [23, 46–48]. For exam-
ple, Jiang et al. [23] found that patients with Schizophre-
nia had GMV atrophy originating in the thalamus and 
expanding to other regions, which is consistent with the 
findings of a longitudinal study [49]. Gray matter altera-
tions in the hippocampus/parahippocampus of migraine 
patients have been widely recognized in cross-sectional 
studies [31]. Moreover, longitudinal studies [13, 50] dem-
onstrated that the gray matter of the temporal, soma-
tosensory, and prefrontal gyrus of migraineurs exhibited 
progressive alterations as the disease advances and that 
progressive gray matter damage in the prefrontal gyrus 
and temporal gyrus was more prominent in patients with 
worsening migraine compared to those with improving 
or stable disease. These findings, along with the results 
of our current study, confirmed the reliability of CaSCN-
based investigation of gray matter morphology in MwoA 
patients and together revealed the time-related pattern 
of neural plasticity of migraine transiting from the initial 
phase to the chronic pain phase, which was manifested as 
the gradual infiltration from the medial inferior tempo-
ral gyrus to the lateral parietal-temporal-occipital gyrus 
and the motor cortex and prefrontal gyrus. As reported 
in the previous study [51, 52], pain is a complex and 
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subjective experience that is shaped by evaluation and 
judgments about afferent sensory information in multi-
ple brain regions, including the prefrontal gyrus, basal 
ganglia, sensorimotor cortex, and temporal-occipital 
cortex. Among these regions, the hippocampus, para-
hippocampus, and amygdala are mainly associated with 
the long-range memory of pain [53], the lateral pari-
etal-temporal-occipital is involved in the integration of 
multisensory information during migraine attacks [54], 
while the prefrontal gyrus and motor cortex are largely 
involved in the cognitive, emotional, and motivational 
dimensions of pain [55]. Therefore, a plausible explana-
tion regarding the current findings is that the long-term 
negative pain memories caused structural disruptions of 
the hippocampus/parahippocampus, interfered with the 
integration of multisensory information in the lateral 
parietal-temporal-occipital cortex and further affected 
the emotional and cognitive functions of the MwoA 
patients, resulting in the structural plasticity of the motor 
and prefrontal cortices.

Despite the meaningful findings in the current study, 
several methodological limitations should be stressed. 
Firstly, the CaSCN values were calculated based on the 
pseudo time series, implying only the extension of causal 
effects rather than directly reflecting the real progression 
of gray matter morphology in MwoA patients. Secondly, 
as the analysis of SCN and CaSCN are group-based, it 
is unavailable to obtain the subject-level values for all 
patients, thus impeding the exploration of their relation-
ship with clinical measurements of migraine. Thirdly, the 
MwoA patients included in the study were concentrated 
between 20 and 30  years of age. Whether the current 
findings are applicable to patients in other age groups 
is yet to be verified. Finally, illness duration was used to 
describe the progression of MwoA, other clinical vari-
ables, such as illness severity, which may be associated 
with brain alterations, should also be considered in the 
future.

Conclusion
In conclusion, our results indicated that gray matter 
structural alterations in the medial inferior tempo-
ral gyrus, especially the parahippocampus, were criti-
cal and initial pathological characteristics in MwoA 
patients. With the increase of illness duration, the 
GMV alterations of MwoA patients expanded from the 
medial inferior temporal gyrus and cerebellum to the 
lateral parietal-temporal-occipital cortex and further 
projected to the motor cortex and prefrontal gyrus, 
suggesting a parahippocampus-driven hierarchy altera-
tion patterns of gray matter morphology in the pro-
gression of migraine. These findings provided further 

evidence for understanding the progressive gray matter 
morphological changes in migraine and may facilitate 
the development of neuromodulation methods target-
ing this procession.
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