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Abstract 

The neuropeptides calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating polypep-
tide (PACAP) have emerged as mediators of migraine pathogenesis. Both are vasodilatory peptides that can cause 
migraine-like attacks when infused into people and migraine-like symptoms when injected into rodents. In this 
narrative review, we compare the similarities and differences between the peptides in both their clinical and preclini-
cal migraine actions. A notable clinical difference is that PACAP, but not CGRP, causes premonitory-like symptoms 
in patients. Both peptides are found in distinct, but overlapping areas relevant to migraine, most notably with the 
prevalence of CGRP in trigeminal ganglia and PACAP in sphenopalatine ganglia. In rodents, the two peptides share 
activities, including vasodilation, neurogenic inflammation, and nociception. Most strikingly, CGRP and PACAP cause 
similar migraine-like symptoms in rodents that are manifested as light aversion and tactile allodynia. Yet, the peptides 
appear to act by independent mechanisms possibly by distinct intracellular signaling pathways. The complexity of 
these signaling pathways is magnified by the existence of multiple CGRP and PACAP receptors that may contribute to 
migraine pathogenesis. Based on these differences, we suggest PACAP and its receptors provide a rich set of targets 
to complement and augment the current CGRP-based migraine therapeutics.
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Background
Migraine is one of the most disabling neurological dis-
orders in the world [1]. It affects over one billion people 
with 3:1 prevalence in women. Migraine is a headache 
lasting 4–72  h with characteristics that often include 
unilateral pulsating pain of moderate to severe intensity 
that is aggravated by routine physical activity and is asso-
ciated with vomiting or nausea and/or photophobia and 
phonophobia [2]. While the mechanisms of migraine are 
still poorly understood, insights from clinical and pre-
clinical studies over the past three decades have focused 

attention on two neuropeptides: calcitonin gene-related 
peptide (CGRP) and pituitary adenylate cyclase-activat-
ing polypeptide (PACAP).

The importance of CGRP in migraine was first real-
ized in reports that CGRP is upregulated during migraine 
attacks and between attacks in chronic migraine patients 
[3–5], although this is not seen in all studies [6–8]. Even 
more striking was the finding that infusion of CGRP can 
induce migraine-like attacks in migraine patients, as 
described below. The importance of CGRP has been fully 
established over the past 5 years with the efficacy of eight 
FDA approved CGRP-based therapeutics [9–13]. These 
drugs include monoclonal antibodies against CGRP or its 
receptor and small molecule receptor antagonists that are 
effective for prevention and treatment of migraine. How-
ever, in general only about 40–60% of migraine patients 
are significantly helped by these agents [12, 14, 15], which 
suggests involvement of other factors beyond CGRP in 
migraine pathophysiology, such as PACAP [16]. In this 
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context, patients who do not respond well to CGRP-
based drugs might respond to drugs that target PACAP 
and similarly, a combinatorial approach targeting both 
CGRP and PACAP might improve treatment efficacies.

Like CGRP, PACAP has been linked to migraine patho-
genesis [17–19]. The PACAP gene encodes two isoforms 
containing either 27 or 38 amino acids with PACAP-38 
being the more prevalent, representing 90% of PACAP 
forms in mammalian tissues [20, 21]. Unless other-
wise indicated, we will refer to both isoforms simply as 
PACAP. As with CGRP, elevated plasma PACAP levels 
during migraine have been reported [19, 22], but not 
consistently observed [23, 24], and infusion of either the 
PACAP-38 or PACAP-27 isoforms caused migraine in 
people, as described below [18, 25].

The goal of this narrative review is to briefly com-
pare and contrast the actions of CGRP and PACAP in 
migraine patients and rodent migraine models. For more 
extensive reviews on CGRP and PACAP, the reader is 
referred to a number of excellent reviews [23, 26–33].

Infusion of CGRP and PACAP in patients
A key similarity of CGRP and PACAP is their abil-
ity to induce migraine-like headaches when infused 
into migraine patients (Table  1). Intravenous infusion 
of CGRP caused a delayed migraine-like headache in 
about 63% of migraine patients (50–77%), but only a mild 
immediate headache in control subjects [34–40]. Similar-
ily, intravenous infusion of PACAP-38 caused a delayed 
migraine-like headache in about 68% of migraine patients 
(58–73%), but only rarely in control subjects [17, 18, 38, 
41]. This was also seen with the shorter PACAP isoform, 
PACAP-27 [25]. In addition, both CGRP and PACAP-
induced attacks in migraine patients were effectively 
treated by sumatriptan [35, 42]. However, sumatriptan 
did not block CGRP-induced headaches in control sub-
jects [43], which emphasizes the importance of doing 
infusion studies in migraine patients.

The frequencies of CGRP and PACAP induced attacks 
were comparable to those observed with other migraine 
triggers (Table 1). These triggers include other members 
of the CGRP and PACAP families, the nitric oxide donor 
glyceryl trinitrate (GTN), phosphodiesterase inhibitors 
that elevate cAMP and cGMP levels, an activator of ATP-
sensitive potassium  (KATP) channels, and inflammatory 
agents (histamine, prostaglandins).

With respect to identifying the relevant receptors for 
CGRP and PACAP involved in migraine, it is informa-
tive that other members of the CGRP and PACAP pep-
tide families can induce migraine. Two CGRP-related 
peptides, adrenomedullin and a synthetic analog of 
amylin (pramlintide), triggered migraine-like attacks 
(Table 1) [40, 46]. As discussed below, CGRP, amylin, and 

adrenomedullin act via a family of related G protein-cou-
pled receptors (GPCRs) and in particular, CGRP binds 
the amylin 1  (AMY1) receptor with equal affinity as its 
canonical receptor [26]. In the case of PACAP, the fam-
ily member vasoactive intestinal peptide (VIP) caused 
migraine-like headaches comparable to PACAP, but only 
after prolonged infusion to mimic the longer lasting vas-
cular actions of PACAP [60]. The shared ability of PACAP 
and VIP is important since while the PACAP1  (PAC1) 
receptor is preferentially activated by PACAP, the two 
peptides are equally active at the VIP-PACAP (VPAC) 
receptors  VPAC1 and  VPAC2, as discussed below.

In migraine patients, CGRP also induced non-head-
ache symptoms characteristic of migraine, including 

Table 1 Comparison of migraine frequencies after infusion of 
CGRP, PACAP, and other triggers in humans

a Administrations were by intravenous infusion (~ 20 min), except for sublingual 
GTN in two studies [47, 51] and oral delivery of sildenafil and cilostazol
b The average frequency and range of all migraine attacks are combined 
from migraine patients with and without aura. Data do not include familial 
hemiplegic migraine, traumatic brain injury, or control subjects
c While originally reported as 33%, this was subsequently revised to 50% [36]
d Further descriptions of the same patients as in [38]
e Average frequency from both the migraine without and with aura cohorts
f PDE = phosphodiesterase

Triggera Migraine  Frequencyb References

CGRP 63% (50–77%) 50%c, [34]
57%, [36]
75%, [35]
63%, [37, 38]d

77%, [39]
56%, [40]

PACAP-38 68% (58–73%) 58%, [18]
73%, [17]
72%, [38, 41]d

PACAP-27 55% [25]

VIP (20 min infusion) 9% (0–18%) 0%, [44]
18%, [17]

VIP (2 h infusion) 71% [45]

Pramlintide (amylin analog) 41% [40]

Adrenomedullin 55% [46]

Glyceryl trinitrate (GTN) 70% (67–80%) 67%, [47]
80%, [48]
50%, [49]
75%, [50]
77%e, [51]

Sildenafil  (PDE5f inhibitor) 83% [52]

Dipyridamole  (PDE5f inhibitor) 50% [53]

Cilostazol  (PDE3f inhibitor) 86% [54]

Levcromakalim  (KATP channel 
opener)

91% (82–100%) 100% [55],
82%, [56]

Histamine 70% [57]

Prostaglandin  E2 58% [58]

Prostaglandin  I2 50% [59]
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photophobia, phonophobia, and nausea. In addition to 
headache, cranial vascular changes were observed with 
dilation of the middle cerebral artery (MCA) and mid-
dle meningeal artery (MMA) [35, 61, 62]. Like CGRP, 
PACAP also induced photophobia and other non-head-
ache symptoms. As with CGRP, there were cranial vas-
cular changes. PACAP-induced headache was associated 
with prolonged dilation of the MMA but not the MCA 
[17, 63]. Both CGRP and PACAP caused side effects 
likely due to systemic vasodilation (flushing, warm sen-
sation, palpitation, dizziness), although PACAP caused 
additional effects not seen with CGRP-infusion [37, 38, 
41] (Fig. 1).

A difference between CGRP and PACAP was revealed 
when patients were asked if they developed premonitory 
symptoms after peptide infusion (Fig.  1). Premonitory 
symptoms occur prior to the headache in most migraine 
patients [64, 65]. Premonitory symptoms most commonly 
observed include fatigue, yawning, neck stiffness, hunger 
or food cravings, mood swings, poor concentration, and 
sometimes photophobia and phonophobia, which also 
occur during the headache phase. After PACAP infusion, 
a delayed migraine-like headache was reported by 23 of 
32 patients (72%) and 11 of those 23 (48%) reported one 
or more premonitory symptoms prior to the headache 
[38]. In contrast, after CGRP infusion, while migraine 
was reported by 25 of 40 patients (63%), only 2 of those 25 
(9%) reported premonitory symptoms prior to the head-
ache. This difference in premonitory symptoms between 
CGRP and PACAP may reflect PACAP’s ability, albeit 
limited, to enter the central nervous system (CNS) [66]. 

Within the CNS, the hypothalamus has been strongly 
associated with the premonitory phase by imaging stud-
ies [67, 68] and other criteria [69]. Importantly, the hypo-
thalamus has abundant PACAP receptors [70]. However, 
caution must be exercised in interpreting these results 
due to several caveats, most notably the lack of placebo 
and non-migraine control groups [38]. These caveats are 
particularly important since CGRP and PACAP induced 
premonitory symptoms to the same extent in patients 
who did not develop a migraine attack as those who did, 
which raises the prospect that patients may have been 
exhibiting peptide responses that were not necessarily 
premonitory of migraine. Hence, it might be safer to refer 
to the symptoms as premonitory-like. Nonetheless, it is 
clear that both CGRP and PACAP can induce a delayed 
migraine-like headache, and that PACAP can also initiate 
premonitory-like symptoms.

To understand the mechanism of CGRP and PACAP 
induced headaches, Ashina and colleagues tested 
whether CGRP and PACAP share  KATP channels as 
a downstream cellular target.  KATP channels are ATP 
regulated potassium channels located in trigemino-
vascular neurons and vessels. The rationale of this idea 
was based on studies showing that the  KATP channel 
opener levcromakalim was a potent inducer of migraine 
in patients (Table  1) [55, 56], and that both CGRP and 
PACAP elevate cAMP levels, which in vascular smooth 
muscle would activate the channels, leading to vasodi-
lation associated with headache [71]. Yet neither CGRP 
nor PACAP actions were blocked by treatment with 
an inhibitor of  KATP channels, glibenclamide [72, 73]. 

Fig. 1 Clinical symptoms caused by CGRP and PACAP infusions. Both CGRP and PACAP cause migraine-like headache in about 2/3 of migraine 
patients. PACAP causes more premonitory symptoms and side effects than CGRP. Data are only from studies that included premonitory symptoms 
[37, 38, 41]. For a comprehensive listing of CGRP and PACAP infusion studies and migraine frequencies, see Table 1. Created with BioRender.com
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However, the lack of efficacy of glibenclamide must be 
tempered by the caveats that the studies were not done 
in migraine patients and glibenclamide only delayed and 
did not prevent levcromakalim-induced headaches [74]. 
Furthermore, preclinical allodynia studies described 
below showed that glibenclamide inhibits CGRP, but 
not PACAP actions in mice. Further studies with gliben-
clamide and other antagonists in migraine patients are 
needed to help resolve this discrepancy.

Migraine relevant sites of CGRP and PACAP 
and their receptors
Based on the shared ability of exogenous CGRP and 
PACAP to cause migraine, a pertinent question is where 
are endogenous sites of CGRP and PACAP expression 
and action in the central and peripheral nervous systems? 
Both peptides and their receptors are found in multiple 

areas relevant to migraine, ranging from the hypothala-
mus to the trigeminal ganglia (Fig. 2). These sites largely 
overlap, but there are differences and few studies have 
looked at cellular co-expression other than in the trigem-
inal and sphenopalatine ganglia [75, 76].

In the peripheral nervous system, CGRP is predomi-
nantly expressed in sensory neurons of the dorsal root 
and trigeminal ganglia, although it is also found in 
motor neurons and is abundant within the enteric nerv-
ous system [26]. The distribution of CGRP appears to be 
largely similar across species (reviewed in [26]). In the 
mouse, rat and human trigeminovascular system, CGRP 
is primarily found in the perivascular afferents inner-
vating cranial arteries [105, 106]. Within rat and human 
trigeminal ganglia, PACAP and CGRP are found in 
neurons, and PACAP receptors are found on both neu-
rons and satellite glia [98, 107–109]. While co-localized 

Fig. 2 Sites of CGRP, PACAP, and their receptors in the CNS and cranial structures. CGRP, PACAP and their receptors are present in meningeal and 
vascular cells [77–80], hypothalamus [75, 76], thalamus [75, 76], amygdala [76, 81–83], cerebellum [75, 76], cerebral cortex [75, 76], sphenopalantine 
ganglia (SPG) [84–87], bed nucleus of stria terminalis (BST) [81, 83, 88, 89], periaqueductal gray (PAG) [90–92], locus coeruleus (LC) [75, 76], trigeminal 
nucleus caudalis (TNC) [93–95], parabrachial nucleus (PBN) [81, 83, 96, 97], trigeminal ganglia (TG) [98–100], dorsal root ganglia (DRG) [98, 101–103], 
and spinal cord [91, 93, 104]. Peripheral cranial structures are indicated with a black circle. For peptides, location within a region indicates presence 
in cell bodies and/or fibers. Relative abundance or cellular resolution of the two peptides or their receptors have generally not been directly 
compared, with the exception of the TG and SPG, where the relative abundances of CGRP over PACAP in the TG and PACAP over CGRP in the SPG 
are indicated. For receptors, location in a region is a collective assessment of CGRP receptors (canonical CGRP,  AMY1) and PACAP receptors  (PAC1, 
 VPAC1,  VPAC2, MRGB2/B3/X2). Created with BioRender.com
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with CGRP, PACAP is found in far fewer neurons [110]. 
Although, PACAP receptors  PAC1 and  VPAC1 are found 
in rat and human satellite glia [111], their functions are 
not known. CGRP receptors are also found on subsets of 
trigeminal ganglia neurons and satellite glia in rats, mice 
and humans, where they may contribute to peripheral 
sensitization in migraine [26, 106, 112].

In contrast to CGRP, in the periphery of the cranium, 
PACAP is mainly expressed in parasympathetic neurons 
with a much smaller trigeminal distribution than CGRP 
in rats and humans [99, 110]. The predominant site of 
PACAP expression in rats and humans is the extracra-
nial parasympathetic sphenopalatine ganglion, which 
also contains PACAP receptors [84, 85, 113]. Stimula-
tion of the sphenopalatine ganglia likely contributes to 
autonomic symptoms of migraine since it can increase 
cerebral blood flow, intracranial and extracranial vasodi-
lation, and dural plasma protein extravasation in humans 
[114]. Within the sphenopalatine ganglia, CGRP contain-
ing fibers from the trigeminal ganglia were found in both 
rat and human [86, 87]. CGRP was also found in neu-
ral cell bodies but only in rats, not humans [86]. Inter-
estingly, PACAP can induce release of CGRP from rat 
trigeminal neurons [107] and stimulation of the rat supe-
rior salivatory nucleus can activate neuronal trigemino-
vascular actions and cranial autonomic symptoms [115, 
116]. These results all suggest the possibility of cross-talk 
between the sphenopalatine and trigeminal systems.

Within the CNS, both peptides and their receptors are 
found in migraine-relevant regions across species, espe-
cially the hypothalamus (Fig.  2) [26, 70]. CGRP recep-
tors have been identified throughout the CNS and are 
particularly abundant in the human cerebellum [117]. 
PACAP is found in the spinal cord and second order neu-
rons of the trigeminal nucleus caudalis (TNC) of rodents 
and humans [93, 118, 119]. Similar to CGRP, PACAP 
binds to a variety of sites throughout the CNS, includ-
ing the hypothalamus, thalamus, various areas through-
out the brainstem, and the dorsal horn of the spinal cord 
across species [120–122]. In particular, the  PAC1 receptor 
is expressed throughout the brain, including the neocor-
tex, limbic system, and brainstem [123]. Like CGRP [26], 
PACAP has been linked to anxiety-like behavior [124, 
125]. PACAP and  PAC1 knockout mice have decreased 
anxiety-like behavior. Both knockouts show a variety of 
neurobehavioral phenotypes including increased hyper-
activity, decreased depression-like behavior, and aber-
rant social interaction [124, 125]. Studies have identified 
a genetic association with PACAP and the  PAC1 recep-
tor with post-traumatic stress disorder in humans and 
shown that alterations in the PACAP/PAC1 pathway are 
involved in stress responses in rodents [126]. In addition, 
chronic stress increased PACAP expression within the 

rat bed nucleus of the stria terminalis [127]. These find-
ings document a role for PACAP in stress and anxiety, 
which are both associated with migraine [128]. Hence, 
the locations of CGRP and PACAP peptides and their 
receptors are overlapping and well-positioned to contrib-
ute to peripheral and central actions in migraine.

CGRP and PACAP migraine‑like functions
CGRP and PACAP roles in vasodilation, neurogenic 
inflammation, and nociception
Both CGRP and PACAP are multifunctional peptides 
with many roles in the nervous, cardiovascular, res-
piratory, gastrointestinal, and reproductive systems [26, 
123, 129]. We will briefly focus on three processes that 
are associated with migraine: vasodilation, neurogenic 
inflammation, and nociception. While the role of vasodi-
lation and neurogenic inflammation in migraine remains 
a debated topic, and neurogenic inflammation has not led 
to a successful therapeutic, it does seem likely that the 
vasculature and local inflammatory signals contribute to 
peripheral sensitization and hence to migraine [26, 130].

Both CGRP and PACAP are well-characterized vaso-
dilatory peptides [131], and as mentioned above both 
can act on cranial vessels. It is intriguing that the two 
peptides, along with another commonly used migraine 
trigger, GTN (a nitric oxide donor), are all vasodilators 
[132]. In addition to their contributions via vasodilation 
in neurogenic inflammation in rats [133, 134], CGRP 
and PACAP cause mast cell degranulation and release 
of inflammatory compounds. These CGRP actions are 
well-documented in the rat dura [80]. PACAP-38 was 
reported to induce dural mast cell degranulation in rats 
and was significantly more potent than VIP and PACAP-
27 [135, 136]. Like CGRP, PACAP is upregulated follow-
ing inflammation in sensory neurons [137]. However, the 
complexity of PACAP actions is highlighted by the fact 
that in contrast to the dura, PACAP inhibits neurogenic 
inflammation in rodent skin [138–141]. Nonetheless, 
within the meninges, it seems likely both PACAP and 
CGRP can contribute to neurogenic inflammation.

With respect to nociception, the story is even more 
complex. While CGRP is recognized as a nociceptive 
peptide [26], PACAP appears to have both antinocicep-
tive and nociceptive functions. In the periphery, PACAP 
was reported to be antinociceptive [138–141]. In con-
trast, PACAP in the CNS appears to be nociceptive 
based on studies with PACAP knockout mice suggesting 
a possible role in central sensitization [141]. Similarly, 
injection of PACAP into the hypothalamic paraventricu-
lar nucleus increased TNC activity in rats, which could 
be inhibited by a  PAC1 receptor antagonist [142] and 
intrathecal injection of PACAP has been shown to induce 
hyperalgesia in mice [122]. PACAP also causes a delayed 
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activation and sensitization of central trigeminovascular 
neurons. Specifically, the central  PAC1 receptors have 
been implicated in pro-nociceptive transmission. A cen-
trally, but not peripherally, administered  PAC1 receptor 
antagonist was able to inhibit dural nociceptive-evoked 
action potentials in central trigeminovascular neurons in 
rats, suggesting that the central  PAC1 receptor is involved 
in PACAP-induced migraine [143].

Light aversion induced by CGRP and PACAP in mice
A shared activity of CGRP and PACAP is their ability to 
induce similar light aversive phenotypes in mice [144]. 
The light aversion assay serves as a surrogate for human 
photophobia [145, 146]. Central (intracerebroventricular, 
thalamic, and cerebellar) and peripheral (intraperitoneal) 
injection of CGRP induced light aversion in wildtype 
mice [144, 147–150]. CGRP-induced light aversion was 
accompanied by increased resting only in the dark zone, 
and a lack of light-independent anxiety in an open field 
assay [147, 151–153]. Likewise, intraperitoneal injection 
of PACAP caused light aversion coupled with increased 
resting in the dark and no anxiety in the open field [144]. 
These findings are consistent with a pioneering study 
by Helyes and colleagues who reported that peripheral 
injection of GTN and PACAP induced light aversive 
behavior in wildtype mice, but not in PACAP knockout 
mice [154]. It should be noted that compared to PACAP-
38, injection of PACAP-27 caused only transient light 
aversion [144]. A pharmacokinetic explanation cannot 
be ruled out since the relative stability of the two PACAP 
isoforms is not clear [21]. However, it is possible that 
PACAP-38, but not PACAP-27, acts by mast cell degran-
ulation, as shown for dilation of the MMA in rats [155]. 
In fact, in rats only PACAP-38 can degranulate mast cells 
and acts via the Mas-related GPCR B3 (MrgB3) receptor 
[156]. Studies exploring the role of the MrgB3 homologs 
in mice (MrgB2) and humans (MRGX2) may give insights 
to how PACAP-38 evokes symptoms of migraine.

Despite the similarities, CGRP and PACAP act inde-
pendently in the light aversion assay. This was shown by 
the fact that CGRP and PACAP responses could not be 
blocked by monoclonal antibodies directed against the 
other peptide [144]. Hence, PACAP-induced responses 
could be blocked with a monoclonal anti-PACAP anti-
body, but not by an anti-CGRP antibody. Conversely, 
CGRP-induced responses could be blocked by an anti-
CGRP antibody, but not by an anti-PACAP antibody. 
This result suggests that CGRP and PACAP do not act 
by sequential or dependent pathways. The possibility of 
dependent actions had been raised by the similar prop-
erties of CGRP and PACAP [131], co-expression in rat 
trigeminal ganglia neurons [99], and PACAP-38 caus-
ing CGRP release in the rat TNC (although not from the 

dura or ganglia) [107]. Contrary to the latter observation 
in rats, a clinical study did not detect increased CGRP 
levels after PACAP-38 infusion [24]. Furthermore, GTN 
increased the number of PACAP-responsive neurons in 
mouse trigeminal ganglia by a mechanism independ-
ent of CGRP [157]. In contrast, the parallel increase in 
CGRP-responsive neurons required CGRP. These data all 
suggest that PACAP and CGRP can act by distinct path-
ways that converge downstream of the receptors to cause 
migraine-like symptoms.

Further support for CGRP and PACAP acting by dif-
ferent pathways to cause light aversion is that PACAP 
was effective in only a subpopulation of CD-1 mice and 
their offspring, which was not seen with CGRP [144]. 
The CD-1 strain is a genetically diverse outbred strain of 
mice, which raised the possibility of genetic differences 
between the responder and nonresponder populations. 
An RNA-seq analysis of trigeminal ganglia gene expres-
sion between the two populations revealed a number of 
candidate genes, including pituitary hormones, recep-
tors, and ion channels that are potential biomarkers and 
therapeutic targets. Whether these genes will provide 
clues for identifying human responder/nonresponder 
populations remains to be seen but this finding of hetero-
geneity reflects an advantage of using genetically diverse 
mice that may better model the variability observed in 
humans [158].

Allodynia induced by CGRP and PACAP in rodents
Subcutaneous injection of CGRP in the periorbital area 
in mice  caused dose and time dependent mechanical 
allodynia [159]. This CGRP-induced periorbital allo-
dynia was abolished by pretreatment with a CGRP recep-
tor antagonist (olcegepant) or a monoclonal anti-CGRP 
antibody [159]. Similar allodynia was also induced by 
intraperitoneal and intrathecal injections of CGRP in 
mice [160, 161] and intraganglionic injections of CGRP 
into rat trigeminal ganglia [162]. Subcutaneous injection 
of PACAP in the periorbital area also caused dose and 
time dependent mechanical allodynia and was blocked 
by pretreatment with a PACAP receptor antagonist, 
PACAP6-38 [159]. Similarly, subcutaneous injection of 
PACAP induced plantar and periorbital hypersensitivity 
in wildtype mice [163].

Consistent with the light aversion findings, CGRP 
and PACAP-induced allodynia appears to act via inde-
pendent pathways as reported by Christensen and col-
leagues. They observed PACAP responses in wildtype 
mice pretreated with anti-CGRP antibody, as well as in 
Ramp1 knockout mice lacking CGRP receptors [163]. 
For comparison, allodynic responses to GTN treatments 
were blocked by anti-CGRP antibodies in wildtype mice 
and not seen in the Ramp1 knockout mice [164]. This 
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indicates that PACAP acts independently of CGRP sign-
aling. Separate pathways were also suggested by pretreat-
ment with the  KATP channel inhibitor glibenclamide. 
Glibenclamide was able to block GTN-induced allodynia 
in mice, which involves CGRP [164, 165], but only par-
tially attenuated PACAP-induced hypersensitivity, indi-
cating that PACAP does not fully depend on this channel 
[163]. A follow up study showed that pretreatment with 
anti-PACAP antibody blocked PACAP-induced plan-
tar hypersensitivity but was not able to block hyper-
sensitivity caused by GTN or the  KATP channel opener 
levcromakalin [166]. However, a caveat of these com-
parisons is that they did not directly test glibenclamide 
or PACAP antibodies against CGRP, but rather against 
GTN, which acts via CGRP, at least in rodents. Gliben-
clamide was also able to attenuate cephalic allodynia 
in spontaneous trigeminal allodynic rats and inhibited 
release of CGRP from dura mater and trigeminal gan-
glion [165]. Yet, translation of these rodent studies to 
migraine patients remains to be established, since as 
mentioned earlier, glibenclamide was unable to block 
CGRP or PACAP-induced headache in control subjects 

[72, 73]. While these findings suggest that CGRP and 
GTN act by pathways not shared with PACAP, other data 
link PACAP to nitric oxide pathways. Peripheral injection 
of GTN increased PACAP within the rat TNC [119], and 
increased the number of PACAP-responsive neurons in 
mouse trigeminal ganglia [157]. Also, GTN induced more 
vasodilation and neuronal activation in trigeminal gan-
glia and the TNC in wildtype mice compared to PACAP 
knockout mice [154]. Taken together, while there seems 
to be some cross-talk between CGRP, PACAP and nitric 
oxide in the trigeminovascular system, it appears that 
PACAP and CGRP can act by independent pathways to 
cause tactile and light sensitivities.

Signaling by multiple CGRP and PACAP receptors
CGRP and PACAP receptors are both Gs-coupled and 
activate cAMP-dependent pathways [26, 123, 167–170] 
(Fig.  3). In addition, both peptides have been shown to 
activate MAP kinase pathways and are reported to cou-
ple to Gq, which signals via calcium pathways involving 
phospholipase C and inositol 1,4,5-triphosphate  (IP3) 
activity [169, 171, 172]. However, conflicting results have 

Fig. 3 Schematic of CGRP and PACAP signaling pathways. CGRP and PACAP can act via multiple receptors, as indicated. For simplicity, signaling 
pathways from generic receptors in a generic cell type are illustrated. In general, activation of both CGRP and PACAP receptors increase cAMP levels, 
which leads to protein kinase A (PKA) activation and EPAC1/2 activation. EPAC1/2 activation by PACAP is well-established, although activation by 
CGRP is less clear (dotted line). Canonical CGRP receptor, but not  AMY1 CGRP receptor, and the PACAP receptor  PAC1 can generate endosomal 
signals following β-arrestin-mediated receptor internalization. Activation of additional G protein pathways that elevate  IP3 and calcium have been 
reported for PACAP and to a lesser extent CGRP (dotted lines). These pathways activate multiple downstream targets, including MAP kinases 
(MAPKs), ion channels, and genes, depending on the cell type. Created with BioRender.com
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been reported for the direct measurement of coupling 
of CGRP receptors to Gq [173, 174]. Furthermore, iden-
tification of Gq coupling has been mostly inferred from 
CGRP mediated calcium mobilization and  IP3 signaling 
[175, 176]. Interestingly, in one report of CGRP signaling 
via Gq, the authors suggested that these cells did not have 
a cAMP response to CGRP [177]. Perhaps the absence 
of Gs and/or the high expression of Gq allows preferen-
tial Gq activation. In contrast, PACAP receptors have 
more robust evidence for Gq-mediated signaling [178], 
although direct comparisons between PACAP and CGRP 
receptors can be difficult to make due to differences 
in model systems. In a series of studies using the same 
transfected receptor model, CGRP mediated stimulation 
of IP accumulation (measured as  IP1, a breakdown prod-
uct of  IP3) was > 200 fold less potent relative to cAMP 
[179, 180]. Whereas, PACAP- mediated stimulation of 
IP was only approximately 4–tenfold less potent relative 
to cAMP [181]. Hence, IP signaling appears to be more 
robust for PACAP receptors than CGRP receptors. Over-
all, it seems that the CGRP receptor can couple to Gq, 
but the coupling may not be as robust as Gs coupling. 
Whereas PACAP receptors appear to effectively couple 
both Gq and Gs.

Thus, CGRP and PACAP receptors have the potential 
to activate similar intracellular signaling pathways that 
could lead to a host of cellular events, ranging from ion 
channel activation to mast cell degranulation (Fig.  3). 
Potential cellular targets relevant to migraine are likely 
both in the CNS, such as the hypothalamus and TNC, 
and in the periphery, such as in the meninges and trigem-
inal ganglia, where numerous cell types express both 
CGRP and PACAP receptors (Fig.  2) [28, 70, 99, 182]. 
CGRP and PACAP actions on these cells potentially acti-
vate similar intracellular signals leading to peripheral and 
central sensitization. Yet despite these similarities, the 
differences between CGRP and PACAP actions in people 
and rodents suggest divergent intracellular pathways and 
targets. However, before we can better understand these 
differences, a key step will be to identify the relevant 
receptors for each peptide.

For CGRP, there are two receptors with approximately 
equal affinities [26]. The canonical CGRP receptor is a 
heterodimer of the GPCR calcitonin receptor-like recep-
tor (CLR) and receptor activity-modifying protein 1 
(RAMP1). A second CGRP receptor,  AMY1, is a het-
erodimer of the GPCR calcitonin receptor (CTR) and 
RAMP1. Both can activate cAMP pathways [183] (Fig. 3). 
However, a direct comparison is needed between the 
receptors given the heterogeneity of intracellular cAMP 
targets seen so far with the canonical receptor [169, 184]. 
While the relative contributions of the two receptors 
in migraine remain to be established, a role for  AMY1 

is supported by the ability of AMY selective ligands to 
cause migraine in people [40] and light aversion, touch 
sensitivity, and grimace in mice [40, 185]. While CGRP 
has a lower affinity for the adrenomedullin receptors 
(CLR/RAMP2 and CLR/RAMP3), given the ability of 
adrenomedullin to induce migraine-like attacks similar 
to CGRP [46], perhaps CGRP actions via these receptors 
should not be ignored.

For PACAP, the canonical receptors are the GPCRs 
 VPAC1,  VPAC2, and  PAC1 [186], which all activate ade-
nylate cyclase and increase intracellular cAMP levels 
analogous to both CGRP receptors [187, 188] (Fig.  3). 
However, one difference between PACAP and CGRP 
receptors may be the ability of PACAP receptors to 
recruit a noncanonical cAMP signaling pathway involv-
ing the Exchange Proteins directly Activated by cAMP 
(EPACs) [189, 190]. The EPACs are cAMP-activated 
guanine nucleotide exchange factors that activate small 
GTPases and thus expand the diversity of cAMP sign-
aling pathways beyond the long-recognized canonical 
pathway involving protein kinase A [191]. Among these 
EPAC targets are MAP kinases [192], although PKA and 
endosomal  β-arrestin complexes can also activate MAP 
kinases [193]. Whether CGRP receptors also use EPACs 
is not as well established. CGRP may recruit EPACs in 
macrophages [194], but in dendritic cells it seemingly 
does not [195]. In a study with primary cardiovascular 
cells, activation of ERK1/2 MAP kinase by CGRP acting 
at the adrenomedullin receptor (a low affinity member 
of the CGRP receptor family) was shown to be mediated 
by a Gi/o pathway, while adrenomedullin used a combi-
nation of Gq/11/14 signaling and EPAC activation not 
used by CGRP to activate ERK1/2 MAP kinase [196]. 
This example of biased agonism illustrates the diversity 
of different G protein couplings and their downstream 
signaling pathways for a receptor closely related to the 
canonical CGRP receptor. Interestingly, there is a long 
established connection between EPAC signaling and pain 
[197], although most evidence to date places EPAC sign-
aling upstream of CGRP, leading to CGRP release from 
nociceptive neurons [191]. Thus, while both PACAP and 
CGRP signal via cAMP, there is the possibility that they 
may use different cAMP signaling pathways.

An intriguing difference between the two CGRP recep-
tors is that they have distinct internalization kinetics 
from the plasma membrane. Cell culture data clearly 
show that CGRP binding to the canonical receptor causes 
β-arrestin complexes and internalization to endosomes, 
but not the  AMY1 receptor [198–200]. Thus, the  AMY1 
receptor potentially has prolonged cell surface signal-
ing, while the internalized canonical receptor could 
continue to signal from endosomes. Importantly, endo-
somal signaling has been reported to be responsible for 
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CGRP-mediated nociception [201, 202]. Likewise, endo-
somal signaling has been reported from the  PAC1 recep-
tor [193] and  VPAC1 and  VPAC2 can also be internalized 
as β-arrestin complexes in endosomes [203]. As with the 
two CGRP receptors, the relative contributions of cell 
surface and internal signaling in migraine by the multiple 
PACAP receptors remains an open question.

A final consideration is that until recently, the dogma 
was that PACAP must be acting via  PAC1 and not the 
 VPAC1 or  VPAC2 receptors, which bind both PACAP and 
VIP. The rationale was primarily based on a report that 
VIP could not induce migraine in patients [204]. Conse-
quently, the first PACAP-based monoclonal antibody to 
be tested was an antagonist to the  PAC1 receptor. Since 
the trial failed to meet primary and secondary endpoints 
[205], this suggests either poor target engagement or pos-
sibly involvement of  PAC1 splice variants [181], or other 
receptors. Indeed,  VPAC1 and  VPAC2 should be consid-
ered as therapeutic targets since more recent studies have 
shown that prolonged VIP infusion can cause delayed 
headache in people [60] and that VIP can induce light 
aversive behavior in mice if measured immediately after 
administration [148]. Alternatively, it is possible that 
PACAP involvement in migraine may be independent of 
 VPAC1,  VPAC2 or  PAC1 receptors. PACAP can act in the 
trigeminal nucleus via an unidentified mechanism [107] 
and MrgB3 can mediate PACAP actions on mast cells in 
rats [156]. Another less characterized candidate PACAP 
receptor may be GPR55 [206]. Hence, there are no short-
age of candidate receptors for PACAP actions relevant 
to migraine, any of which has the potential for different 
intracellular signaling pathways from CGRP.

Conclusion
CGRP plays an integral role in migraine. However, CGRP 
alone cannot account for all cases of migraine. The neu-
ropeptide PACAP is likely to play a related, but dis-
tinct role as CGRP based on similarities and differences 
observed in both  clinical and preclinical studies. The 
PACAP pathway appears to be independent of the CGRP 
pathway  in rodent models [144, 163] suggesting  that 
CGRP and PACAP act by parallel paths that converge 
downstream of their receptors. The existence of multi-
ple CGRP and PACAP receptors provides a plethora  of 
potential diversity in signaling pathways for each peptide. 
Thus, we suggest that PACAP and its receptors provide 
ideal therapeutic targets to complement and augment the 
current CGRP-based migraine therapeutics.
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