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Abstract
Background  The definitive pathogenic mechanisms underlying chronic migraine (CM) remain unclear. Mounting 
evidence from functional and structural magnetic resonance imaging (MRI) studies suggests that the caudate nucleus 
(CN) plays a role in the cognitive, sensory, and emotional integration of pain information in patients with migraine. 
However, evidence concerning the role played by CN in CM patients is limited. Here, we used the CN as the seed to 
explore patterns of functional connectivity (FC) among healthy controls (HCs), patients with episodic migraine (EM), 
and patients with CM.

Methods  We included 25 HCs, 23 EM patients, and 46 CM patients in this study. All participants underwent resting-
state functional MRI scans on a GE 3.0T MRI system. We performed seed-based FC analyses among the three groups 
using the bilateral CNs as seeds. We also compared the subgroups of CM (with and without medication overuse 
headache, males and females) and performed Pearson’s correlation analyses between FC values and the clinical 
features of CM patients.

Results  FC values between the right CN and five clusters (mainly involved in emotion, cognition, and sensory-related 
brain regions) were higher in CM patients than in HCs. Compared to EM patients, enhanced FC values between the 
bilateral precuneus, left anterior cingulate gyrus, right middle cingulate cortex, right lingual gyrus, and right CN were 
shown in the CM patients. There were no significant differences between CM patients with and without MOH, males 
and females. FC values between the bilateral calcarine cortex, lingual gyrus, and right CN were positively correlated 
with body mass index. Moreover, right CN-related FC values in the left calcarine cortex and right lingual gyrus were 
inversely correlated with visual analogue scale scores for headaches.
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Background
Migraine is a disabling neurological disorder with a 
worldwide prevalence of 14% (males, 8.6%; females, 
17.0%) [1]. Chronic migraine (CM) affects approximately 
1–2% of the global population [2], and patients with epi-
sodic migraine (EM) progress to CM at a rate of 2.5% per 
year [3]. Patients with CM have reduced household pro-
ductivity, more disabilities, and worse quality of life rela-
tive than those with EM [4]. CM is defined as headaches 
on at least 15 days (migraine-like attacks ≥ 8 days) per 
month for more than 3 consecutive months [5]. Medi-
cation overuse is regarded as a consequence of chronic 
headache, a condition that is particularly common 
among migraineurs and tends to form medication over-
use headache (MOH) [6]. A growing number of research-
ers now believe that MOH is a sequel or complication to 
CM rather than a separate entity [7, 8]. In recent years, 
approximately half of all CM patients have been con-
sidered comorbid with MOH—a condition that further 
complicates the clinical course of CM and its treatment 
[9]. However, the definitive pathophysiological mecha-
nisms responsible for CM are not well understood.

In past decades, advanced neuroimaging technologies 
have been used to study the pathophysiology of migraine 
and explore its potential neuroimaging markers. Several 
studies have used functional and structural magnetic 
resonance imaging (MRI) to show that CM is closely 
associated with changes in the intrinsic brain network 
[10–14]. A study used brain functional connectivity (FC) 
to compare CM and EM and revealed that CM patients 
have stronger FC within the pain matrix [15]. CM is also 
associated with cognitive–emotional dysfunction. The 
caudate nucleus (CN) is a pivotal part of the basal gan-
glia (BG), which has been reported to be involved in the 
cognitive, sensory, and emotional integration of pain 
input [16]. Based on existing knowledge, the CN appears 
to be associated with migraine attacks [17] and chroni-
fication [18]. One study reported that caudate volumes 
were larger in migraine patients and were positively 
correlated with attack frequency [17]; however, another 
study reported reduced left caudate volumes in migraine 
patients [19]. Previous functional MRI (fMRI) studies on 
amplitude of low-frequency fluctuations, regional homo-
geneity, and functional connectivity density (FCD) have 
discovered abnormalities in the CN of migraine and 
MOH populations compared with those in the control 
population [20–22]. Enhanced FC between the hypothal-
amus and the CN has also been reported in individuals 

with CM [23]. One study compared the bilateral tem-
poral pole, ipsilateral insula, ipsilateral middle frontal 
gyrus, and contralateral parahippocampus of migraine 
patients and reported a significantly lower FC of the CN 
in patients whose migraine episodes progressed than 
in patients whose migraine episodes did not progress 
[24]. In contrast, another study reported significantly 
enhanced FC of the left CN in the bilateral parahippo-
campal gyrus, right amygdala, and right insula of patients 
with migraine compared to HCs [17].

Prior studies have not reached uniform conclusions 
regarding changes in the FC of the CN in patients with 
migraine. Moreover, there is little research on CM popu-
lations, and role of the CN in CM is unclear. In this study, 
we investigated the involvement of the CN in the patho-
physiology of CM and divided the CM population into 
subgroups to explore whether combined MOH or gender 
difference impacts the FC. We hypothesized that the FC 
of the CN is disrupted in CM patients and that the com-
bined MOH affects the FC. We also assessed whether the 
clinical characteristics of CM were correlated with FC.

Methods
Study population
We prospectively enrolled 105 participants, including 
28 healthy controls (HCs), 27 patients with EM, and 50 
patients with CM. The 77 participants with migraine 
were patients who presented at Beijing Tiantan Hospital 
(Capital Medical University) from October 2020 to July 
2022. Each patient was diagnosed by at least two neurol-
ogists who specialized in headaches. The inclusion crite-
ria were as follows: (1) All diagnoses of EM and CM (with 
and without MOH) fulfilled the International Classifica-
tion of Headache Disorders 3rd edition (ICHD-3). All 
patients had migraine without aura. MOH is defined as 
a complication of CM that involves the frequent overuse 
of medication to treat acute headaches [6, 9, 25]. (2) No 
migraine prophylactic medication within the preceding 3 
months. (3) Right-handed. (4) Volunteered to engage in 
the study. All participants underwent physical examina-
tions, routine laboratory tests, and imaging examinations 
before enrollment. After enrollment, they completed a 
headache questionnaire that collected data regarding 
headache history, headache days per month, medication 
use, and some related scales in the preceding 3 months. 
All patients with migraine completed the Migraine Dis-
ability Assessment Scale (MIDAS), Headache  Impact 
Test-6 (HIT-6), Patient  Health  Questionnaire-9 

Conclusion  Our results revealed abnormal right CN-based FC values in CM patients, suggesting dysfunction of brain 
networks associated with pain perception and multi-regulation (emotion, cognition, and sensory). Aberrant FC of the 
CN can provide potential neuroimaging markers for the diagnosis and treatment of CM.
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(PHQ-9), Generalized Anxiety  Disorder-7 (GAD-7), 
Pittsburgh  Sleep Quality  Index (PSQI), and Visual Ana-
logue Scale (VAS). Higher scores of the HIT-6, PHQ-9, 
GAD-7, and PSQI represent greater impact of headaches, 
more serious depression, anxiety and sleep disturbance 
respectively. The VAS is used to evaluate the intensity 
of headache pain. A 3T MRI was performed to collect 
imaging data, and participants were instructed to avoid 
alcohol, caffeine, nicotine, and other substances for a 
minimum of 12 h prior to the MRI examination.

The exclusion criteria were as follows: (1) Existence 
of any cardiovascular, metabolic, or psychiatric disor-
ders; cranium trauma; other subtypes of headache; and 
chronic pain disorder that may result in the overuse of 
analgesics. (2) Use of substances (such as alcohol or nico-
tine) other than the drugs included in the diagnostic cri-
teria. (3) Pregnancy or menstrual period in women; (4) 
Inability to tolerate MRI examinations (that is, conditions 
such as claustrophobia). (5) Poor quality of data from 
MRI scans. Healthy controls should meet all of the above 
inclusion criteria except for the first one and fufill all the 
exclusion criteria.

This cross-sectional study was a component of a clini-
cal trial (NCT05334927). The institutional review board 
of Beijing Tiantan Hospital approved the study proto-
cols and procedures. The study was approved by the 
Ethics Committee of Beijing Tiantan Hospital, Capital 
Medical University (approval no. KY2022-044). Before 
their inclusion in the study, all participants gave written 
informed consent under the principles of the Declaration 
of Helsinki.

Image acquisition
All imaging was performed with a GE 3.0 T MRI system 
(Signa Premier, GE Healthcare) equipped with a 48-chan-
nel head coil at the National Neurological Centre in Bei-
jing Tiantan Hospital. Foam padding and earplugs were 
used to minimize noise from head movements and the 
scanner. Each participant was required to keep their 
head and neck steady, remain awake, close their eyes, and 
not think about anything during the 330-second blood 
oxygen level-dependent (BOLD) signal scan. A high-
resolution 3D T1-weighted anatomical image was col-
lected using the MP-RAGE sequence with 1.0 × 1.0 × 1.0 
mm3 resolution (preparation time = 880 ms, recov-
ery time = 400 ms, acceleration factor = 2, acquisition 
time = 4:00, field of view = 250 × 250 mm2, flip angle = 8°, 
axial slices = 192). Resting-state BOLD functional images 
were obtained using a multi-band BOLD sequence 
with 2.4 × 2.4 × 2.4 mm3 voxel size. The following fMRI 
parameters were used: transverse acquisition, slice num-
ber = 65 with multi-band factor = 6, flip angle = 64°, TE/
TR = 39/1000 ns, no in-plane acceleration or slice gap, 

time point = 330, field of view = 208  mm, acquisition 
matrix = 86.

Pre-processing of fMRI data
All image data were analyzed using the SPM12 (fil.ion.
ucl.ac.uk/spm) and Data  Processing  Assistant  for  Rest-
ing-State  fMRI  (DPARSF, advanced edition) (http://
www.rfmri.org/DPARSF) tools in MATLAB (Mathworks, 
Natick, MA, USA). Data pre-processing in SPM12 was 
conducted as follows: (1) removal of the first twenty vol-
umes of each functional time course; (2) slice-time cor-
rection; (3) realignment; (4) co-registration; (5) spatial 
normalization; and (6) data smoothing with an 8  mm 
FWHM Gaussian kernel. To minimize artifacts, we 
excluded data in which we detected a displacement of 
> 1.5 mm in any direction or a head rotation angle > 1.5°. 
Structural images were partitioned into maps of gray 
matter, white matter, and cerebrospinal fluid, and the 
scans were normalized to the Montreal Neurological 
Institute brain template. The effects of low-frequency 
drift and high-frequency noise were removed using lin-
ear trend removal and temporal bandpass filtering (0.01–
0.08 Hz) in DPARSFA.

Seed-based analysis of FC
Seed-to-whole-brain FC data were obtained as described 
henceforth. The bilateral CNs were used as the seeds, 
which were defined based on the automated  anatomi-
cal  labelling (AAL) atlas [26]. The mean BOLD time 
course of voxels within the right and left CNs were 
extracted. Pearson’s correlation coefficients were cal-
culated between the extracted time course and the time 
courses of the entire brain in a voxel-wise manner. The 
individual r-scores were transformed to normally distrib-
uted Z-scores with Fisher’s z transformation, and these 
were used in a general linear model analysis. The value 
of each voxel throughout the entire brain was considered 
representative of the degree of relative FC to each seed. 
Z-maps were subsequently used to analyze relative FC 
using SPM12.

In our analysis, we determined the differences in 
whole-brain resting-state FC in each CN seed region 
among the three groups. First, we performed one-way 
analysis of variance (ANOVA) with age and gender as 
covariates. Next, we performed a two-sample t-test at 
the level of the voxel with gender and age as covariates. 
Group-level effects were deemed significant if they were 
below the uncorrected voxel-level threshold of p < 0.001 
(two-tailed) and the family-wise error-corrected cluster 
extent threshold of p < 0.05. Finally, the mean FC val-
ues (Z-scores) for the remaining clusters of CM were 
extracted and used for Pearson’s correlation analysis 
against clinical data.

http://www.rfmri.org/DPARSF
http://www.rfmri.org/DPARSF
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Statistical analysis
All data were presented as the mean ± standard devia-
tion (SD). The chi-square test was used to compare dif-
ferences between genders. Kruskal-Wallis H test was 
performed to compare continuous variables but nonnor-
mal data such as age and body mass index (BMI) among 
three groups. Two sample t-test was applied to compare 
normally distributed data (PSQI scores) between the EM 
and CM groups. Mann-Whitney U tests were conducted 
to compare the non-normally distributed data (duration 
of migraine history, headache frequency, VAS scores, 
MIDAS scores, HIT-6 scores, PHQ-9 scores and GAD-7 
scores) of patients the between EM and CM groups. Cor-
relations between clinical characteristics and CN-based 
FC values (Z-scores) were analyzed using Pearson’s cor-
relation analysis. Positive and negative correlations were 
represented by positive and negative correlation coeffi-
cients (r), respectively. The level of statistical significance 
was set at p < 0.05. All statistical tests were two-tailed and 
were analyzed using SPSS statistical software (version 
26.0; IBM Corp., Armonk, NY, USA).

Results
Demographics and clinical data
The demographic and clinical features of enrolled par-
ticipants in each group are listed in Table  1. Three HC 

participants were excluded because of poor MRI data 
quality; four EM patients were excluded owing to incom-
plete MRI scans (n = 2) and poor quality of data (n = 2), 
and four CM patients were excluded owing to incomplete 
MRI scans (n = 1) and poor quality of data (n = 3) (Fig. 1). 
We finally included 87 participants, including 25 HCs, 23 
patients with EM, and 46 patients with CM (22 without 
MOH and 24 with MOH). The results of the chi-square 
test and Kruskal-Wallis H test revealed no significant dif-
ferences among groups (EM group, CM group, and HCs) 
in terms of gender (p = 0.510), age (p = 0.426), and BMI 
(p = 0.205) (Table 1). For CM patients, the mean duration 
of migraine history was 17.70 ± 12.17 years, with a mean 
of 24.11 ± 6.27 headache days per month. EM patients 
had a mean duration of migraine history of 12.90 ± 9.79 
years, with a mean of 8.09 ± 6.52 headache days per 
month. The MIDAS (p < 0.001), PHQ-9 (p < 0.001) and 
GAD-7 (p = 0.006) scores were significantly higher in 
CM patients than that in EM patients. However, the VAS 
(p = 0.288), HIT-6 (p = 0.315) and PSQI (p = 0.390) scores 
were not significantly different between the CM and EM 
groups. Within the subgroups of CM, CM patients with 
MOH had a longer duration of EM history (p = 0.021), 
longer duration of CM history (p < 0.001), and higher 
headache frequency (p = 0.033) than CM patients with-
out MOH (Fig S1, Table 2). There were no significant dif-
ferences in other characteristics between these groups. 
Females of CM patients had a higher MIDAS scores 
(p = 0.027) than males (Table S1), with no differences in 
other clinical data.

Seed-based rs-FC analysis in the HC, EM, and CM groups
The bilateral CNs were chosen as the region of interests 
to explore the FC with the whole brain voxels. The results 
of an ANOVA among the HC, EM, and CM groups 
revealed that the FC of the right CN differed significantly 
in five clusters: the right middle temporal gyrus, bilateral 
calcarine cortex, right orbital part of the inferior fron-
tal gyrus, bilateral middle cingulate cortex (MCC), and 
the right inferior and superior parietal cortex (Table  3; 
Fig.  2). There were no significant differences in the left 
CN.

Whole-brain FC analysis using the right CN as the 
seed revealed that compared with HCs, CM patients had 
higher FC values across a broad range of brain regions, 
including the bilateral calcarine cortex, bilateral lingual 
gyrus, bilateral anterior cingulate cortex (ACC), right 
superior parietal cortex, right inferior parietal cortex, 
right precuneus, right temporal lobe, right insula, right 
orbital part of the inferior frontal gyrus, and right tempo-
ral pole of the superior temporal gyrus (Fig. 3B; Table 3). 
FC values between the bilateral precuneus, left ACC, 
right MCC, and right CN were remarkably higher in the 
CM group than in the EM group (Fig. 3 C, Table 3). No 

Table 1  Demographic and clinical data
Controls
(N = 25)

EM
(N = 23)

CM
(N = 46)

P 
value

Gender(female/
male)

10 / 15 9 / 14 13 / 33 0.510a

Age(years) 35.68 ± 9.53 38.09 ± 11.56 38.80 ± 12.99 0.426b

BMI (kg/m2) 22.10 ± 3.24 24.40 ± 4.44 22.83 ± 3.55 0.205b

Migraine history 
(years)

- 12.90 ± 9.79 17.70 ± 12.17 0.131c

Headache fre-
quency (d/mo)

- 8.09 ± 6.52 24.11 ± 6.27 <0.001c

Pain intensity VAS 
score

- 6.30 ± 2.08 6.96 ± 1.49 0.288c

MIDAS score - 45.05 ± 32.61 125.70 ± 66.85 <0.001c

HIT-6 score - 64.45 ± 7.37 65.93 ± 7.88 0.315c

PHQ-9 score - 4.59 ± 4.03 10.78 ± 6.23 <0.001c

GAD-7 score - 4.18 ± 4.68 7.98 ± 5.69 0.006c

PSQI score - 8.85 ± 4.23 9.93 ± 4.83 0.390d

Medication over-
use headache

- - 24 (52.17%) -

Note: EM, episodic migraine; CM, chronic migraine; BMI, Body Mass Index; 
d/mo, days per month; VAS, Visual Analogue Scale; MIDAS, Migraine 
Disability Assessment Scale; HIT-6, Headache  Impact Test-6; PHQ-9, 
Patient  Health  Questionnaire-9; GAD-7, Generalized Anxiety  Disorder-7; PSQI, 
Pittsburgh  Sleep Quality  Index.

Values represent mean ± SD or n (% of total)
a Chi-square test
b Kruskal-Wallis H test
c Mann-Whitney U test
d Independent samples t test
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significant differences were detected between HCs and 
the EM group.

Seed-based rs-FC analysis between CM subgroups with 
and without MOH
There were large differences in clinical characteristics 
between the CM subgroups with and without MOH (Fig 
S1, Table  2). The results revealed no significant differ-
ences between CM patients with and without MOH.

Seed-based rs-FC analysis between males and females of 
CM patients
Our results of CN-based FC suggested no significant dif-
ferences between males and females in CM patients.

Correlations between FC and clinical characteristics in CM 
patients
For each brain region listed in Table 3, we explored the 
correlation between FC and the clinical characteristics 
of all patients with CM. The FC values between the right 
CN and left lingual gyrus were positively correlated with 

BMI (p = 0.003, r = 0.423, n = 46), and a similar pattern 
was noted for the right lingual gyrus (p = 0.003, r = 0.422, 
n = 46) (Fig. 4 A, B). Similarly, FC values between the right 
CN and bilateral calcarine cortex were positively corre-
lated with BMI (left: p = 0.013, r = 0.364, n = 46; and right: 
p = 0.007, r = 0.390, n = 46) (Fig. 4 C, D). Furthermore, CN-
related FC values in the left calcarine cortex (p = 0.005, r 
= -0.404, n=46) and right lingual gyrus (p = 0.003, r = 
-0.427, n = 46) were inversely correlated with VAS scores 
(Fig. 4E, F). There was no significant correlation between 
the FC values and other clinical characteristics (including 
the PHQ-9, GAD-7, HIT-6, PSQI, and MIDAS scores).

Discussion
Our study firstly performed whole-brain seed-to-voxel 
analyses which focused on CN-based FC in CM patients 
compared with those in EM patients and HCs. The ini-
tial results revealed that patients with CM exhibited 
enhanced right CN-based FC with brain regions related 
to cognitive, emotional, and sensory functions (Fig.  5). 
Next, we found that the strength of right CN-based FC 

Fig. 1  Flowchart of the participant inclusion process
 Note: CM, chronic migraine; EM, episodic migraine; MOH, medication overuse headache
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was correlated with clinical indicators of obesity (BMI) 
and headache intensity (VAS scores). Aberrant FC of 
these brain areas can contribute to the aberrant mani-
festations of CM such as memory loss, sensory abnor-
malities, cognitive impairment, cutaneous allodynia, 
sleep disorders, and increased susceptibility to migraine 
attacks. The dysfunction of the CN may be one of the 
pathophysiological mechanisms of CM. Nevertheless, as 
opposed to our assumptions, there were no significant 
differences among CM patients with and without MOH. 
This indicated that the aberrant FC in CM patients was 
not impacted by the combined MOH.

The anatomical connections and functions of the CN
The CN is a deep cerebrum nucleus with C-shaped 
structure that consists of the head, body, and tail. It has 
a direct anatomical connection to the peripheral BG 
structures and exact fiber projection to the broad regions 
across the cerebral cortex. These connections engage in 
the formation of cortico-striato-thalamo-cortical circuits 
(CSTC) [27]. The striatum is an important part of the 
CSTC circuits, which consists of the CN and putamen 
and includes three parts (limbic, associative or cogni-
tive, and sensorimotor areas). Each part creates a unique 
projection pattern by receiving projections from a dif-
ferent cerebral cortex [2]. The most ventral parts of the 
CN as one of the parts of the limbic area of the striatum, 
which mainly receives fibers from limbic and paralim-
bic cortices [28]. The associative or cognitive area has 

fiber connections with the frontal, parietal and temporal 
lobes, containing most of the CN [27, 29]. Similarly, the 
sensorimotor area receives the projection from the pri-
mary motor and somatosensory cortices, containing the 
dorsolateral edge of the head of the CN [27]. In addition, 
CN and putamen receive axons from almost all parts of 
the cortex excluding primary visual, auditory, and olfac-
tory cortices [30]. The CN is involved in the regulation 
of emotion, cognition (memory, language, visuospatial, 
executive, computational, and comprehension judg-
ments), movement, and sensation by connecting with 
these brain regions. Pain is a multidimensional com-
posite with a highly specialized sensory experience [31]. 
Some evidence suggests an involvement of the CN in 
pain modulation by affecting the affective and cognitive 
processing of pain [32] and the CN might be regulated 
by the bioactive substance (arginine vasopressin, oxy-
tocin, and so on) from the other brain regions, affecting 
the pain perception [33, 34]. Considering the CN has a 
complex and diverse function and the brain areas impli-
cated in these projections correlate with the symptoms of 
CM, we selected the CN as a seed to explore whether it is 
involved in the pathophysiology of CM.

Aberrant FC of CN in CSTC pathway associated with 
emotional-cognitive modulation
Cognitive–emotional dysfunction is prevalent in patients 
with CM, and emotions and different cognitive states 
(including the aspects of attention and memory) have 
been shown to modulate pain perception [3]. In our 
study, CM patients exhibited dysfunction in brain regions 
belonging to the CSTC pathway compared with HCs. In 
the CSTC circuits, the cortical axonal fiber projections to 
the striatum and enters the BG to the thalamus via direct 
and indirect pathways which recurrently terminates to 
the brain cortex [35], relating to emotional-cognitive 
modulation and pain processing.

The ACC and insula are mainly thought to be compo-
nents of the limbic (emotional) system and are essen-
tial in coding the affective and motivational aspects 
of pain [36]. They are also a part of the somatosensory 
cortex, which perform the function of cognitive pro-
cessing [37]. Our results confirmed that both the ACC 
and the insula affected the CN during pain percep-
tion, manifesting as enhanced FC between the CN and 
these brain regions. Prior findings concluded that the 
ACC and the CN formed an essential sequential path-
way for processing pain avoidance behavior [38], which 
further implies the ACC and CN are associated with 
pain modulation. And the ACC is linked to the evalua-
tion and expression of negative emotion [39], it has been 
found to show structural and functional changes in CM 
patients. CM patients tend to suffer from negative emo-
tions or irritability when a headache occurs, and the 

Table 2  Comparisons of demographics and clinical 
characteristics between CM with and without MOH

Without MOH
(N = 22)

With MOH
(N = 24)

P value

Gender (female/male) 6 / 22 7 / 24 0.915a

Age (years) 36.77 ± 16.06 40.67 ± 9.33 0.660b

BMI (kg/m2) 22.65 ± 2.94 22.99 ± 4.09 0.974b

Migraine history (years) 13.50 ± 11.76 21.54 ± 11.46 0.021b

CM history (months) 16.73 ± 19.22 59.75 ± 59.96 < 0.001b

Headache frequency (d/
mo)

22.00 ± 6.67 26.04 ± 5.31 0.033b

Pain intensity VAS score 6.68 ± 1.67 7.21 ± 1.28 0.306b

MIDAS score 136.41 ± 61.81 115.88 ± 71.02 0.303c

HIT-6 score 65.68 ± 6.67 66.17 ± 8.98 0.559b

PHQ-9 score 11.95 ± 5.74 9.71 ± 6.59 0.226c

GAD-7 score 9.05 ± 5.58 6.96 ± 5.72 0.222c

PSQI score 10.14 ± 5.15 9.74 ± 4.60 0.786c

Note: MOH, medication overuse headache; BMI, Body Mass Index; CM, chronic 
migraine; d/mo, days per month; MIDAS, Migraine Disability Assessment Scale; 
HIT-6, Headache Impact Test-6;  PHQ-9, Patient Health Questionnaire-9; GAD-
7, Generalized Anxiety Disorder-7; PSQI. Pittsburgh   Sleep Quality Index; VAS, 
Visual Analogue Scale.

Values represent mean ± SD or n (% of total)
a Chi-square test
b Mann-Whitney U test
c Independent samples t test
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negative emotional state often increases pain. This may 
explain why recurrent migraines are often combined with 
depression and anxiety disorders. People with CM have 
a 3.8 times higher risk of being depressed compared to 
HCs and approximately 37% of them have a psychiatric 

disorder [40]. The ventral CN with more interconnection 
to the limbic system, they are the part of the limbic CSTC 
that is implicated in affective functions [41]. This explains 
the mechanisms underlying our results, as the dysfunc-
tion of the limbic CSTC circuit could lead to abnormal 

Table 3  Brain regions showing seed-based resting-state FC differences of right CN between CM and EM, HCs
Brain regions MNI coordinates Peak

F/t value
Cluster 
size

Cluster 
level
PFWE corr.

x y z

Three group comparison
Cluster 1 60 -33 -9 15.78 199 0.003

Temporal_Mid_R

Cluster 2 12 -72 9 11.40 172 0.005

Calcarine_R

Calcarine_L

Cluster 3 42 33 -3 13.75 116 0.026

Frontal_Inf_Orb_R

Frontal_Inf_Tri_R

Cluster 4 3 -3 30 13.10 126 0.019

Cingulum_Mid_R

Cluster 5 24 -66 63 14.12 169 0.006

Parietal_Sup_R

Parietal_Inf_R

CM > HC
Cluster 1 12 -72 9 4.48 432 < 0.001

Calcarine_R

Calcarine_L

Lingual_R

Lingual_L

Cluster 2 27 -69 60 5.19 365 < 0.001

Parietal_Sup_R

Parietal_Inf_R

Precuneus_R

Cluster 3 60 -30 -12 5.43 367 < 0.001

Temporal_Mid_R

Temporal_Inf_R

Temporal_Sup_R

Cluster 4 42 33 -3 4.75 310 0.001

Insula_R

Frontal_Inf_Orb_R

Temporal_Pole_Sup_R

Cluster 5 6 33 3 4.28 138 0.025

Cingulum_Ant_R

Cingulum_Ant_L

CM > EM
Cluster 1 12 -30 36 4.62 182 0.012

Cingulum_Mid_R

Precuneus_R

Precuneus_L

Cingulum_Ant_L

Cluster 2 6 -42 3 4.51 124 0.043

Lingual_R
Note: MNI, Montreal Neurological Institute; L, left; R, right; FWE, family-wise error corrected; CM, chronic migraine; EM, episodic migraine. Brain region localizations 
were performed using Automatic Anatomical Labeling (AAL) atlas and number of voxels of the anatomical regions in which the cluster extents to are reported. The 
surviving clusters were assigned thresholds at level p < 0.001 and FWE-corrected to p < 0.05 at the cluster level.
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clinical manifestations in CM. Nevertheless, other brain 
regions involved in this circuit did not show significant 
differences in our study. The other complex functions 
performed by these regions as well as the small sample 
size may explain it. The CSTC circuits also play a role in 
Parkinson’s disease and obsessive-compulsive disorders 
(OCD) [16, 42], and several studies have reported clinical 
observations regarding the interplay of migraine and the 
extrapyramidal system. Some findings have demonstrated 
that patients with BG disorders are more likely to suffer 
from migraines and suggested that these CSTC circuits 
can modify the course of migraine [16]. Taken together, 
these findings suggest that the dysfunction of this system 
not only leads to the occurrence of motor system disor-
ders, but also chronification of migraine. Further studies 
need to focus on the role of this circuit in CM.

Previous studies have shown that CM patients with 
higher subjective and objective cognitive impairment 

mainly manifested the most striking deficits in memory/
delayed recall (65.3%) [40]. In our study, CM patients 
showed enhanced FC between cognition-related brain 
regions and the right CN compared with HCs. These 
brain regions include the ACC, insular cortex, superior 
and inferior parietal gyrus, precuneus, and orbitofrontal 
cortex (OFC). These brain areas are jointly involved in 
cognitive regulation through projections to the CN and 
are also included in the cognition-related CSTC circuit. 
Damage to the CN has been known to cause cognitive 
impairment [43]. The parietal lobe was thought to have 
an association with the function of basic attention, lan-
guage, and social cognition [44]. The precuneus belongs 
to the default mode network (DMN) that regulates 
higher-order cognitive function [14]. The OFC belonged 
to the frontostriatal circuits and importantly influences 
higher cognitive brain function [45]. A recent study 
has reported decreased intrinsic rs-FC in the cognitive 

Fig. 2  Differences in the functional connectivity of the right caudate nucleus among the CM, EM, and HC groups. The color bar represents the 
F-values
 Note: L, left; R, right; CM, chronic migraine; EM, episodic migraine; HC, healthy control
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networks such as the DMN, salience network, and cen-
tral executive network (CEN) of CM patients [14]. In 
contrast, our results showed enhanced FC between the 
CN and cognition-related brain areas. Such inconsistent 
findings are likely due to the variations in sample recruit-
ment, the proportion of gender, selection of seed, and 

the analysis methods. Our results suggest that the syn-
chronous changes in BOLD signals between these brain 
regions may cause cognitive dysfunction in CM.

Fig. 3  Differences in the FC values of the right CN between the CM, EM, and HC groups. (A). Right CN masks generated based on the automated 
anatomical labeling atlas. (B). When using the right CN as the seed, patients with CM show significantly higher FC values than HCs. (C). Patients with CM 
show significantly higher FC of the right CN than patients with EM. FC values in the (D).emotion-cognition related and (E). sensory-related brain regions 
show significant differences in HCs and patients with CM. (F). Patients with CM show significant FC values differences between the right CN and certain 
brain regions than EM patients. The color bar shows the t-values of the two-sample t-tests on FC.
 Note: L, left; R, right; FC, functional connectivity; CN, caudate nucleus; CM, chronic migraine; EM, episodic migraine; HC, healthy control.
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Aberrant FC of CN in brain regions associated with sensory 
processing in CM
Our study found high FC values between the CN and 
brain regions related to sensory perception (including the 
calcarine cortex, lingual gyrus, temporal gyrus, temporal 
pole of the superior temporal gyrus, and inferior parietal 
gyrus) in CM patients compared to HCs. Previous MRI 
studies of CM patients have illustrated that correspond-
ing brain networks with dysfunction primarily include 
the sensory networks (auditory network, AN; and visual 
network, VN). Enhanced FC in brain areas within the VN 
and AN implies an increased visual or auditory stimuli 
may potentiate the prominence of pain inputs, causing 
increased pain sensation [46]. In addition, neurons sen-
sitive to visual, auditory, and somatosensory modalities 
have been identified in the CN and the lesions of CN can 
induce behavioral disturbances and over-reactivity, sug-
gesting a failure of the inhibitory modulation of sensory 
inputs [36]. Visual signals transmitted through the retina 
are transmitted progressively along the occipito-pari-
etal and occipito-temporal pathways [47]. The calcarine 

cortex and lingual gyrus as the pivotal areas for the visual 
pathway are associated with the perception of phos-
phenes [48], visual processing, and spatial memory [49]. 
Enhanced FC of the CN with the calcarine cortex and lin-
gual gyrus has been presented among CM patients in our 
study, which may reflect disrupted visuomotor function 
and the failure of the CN in modulating sensory inputs. 
These were consistent with certain findings that impair-
ments of visuomotor speed processing were observed in 
migraine patients with a higher frequency of headache 
attacks and a longer course of the disease [50]. The tem-
poral pole is involved in comprehensive multisensory 
processing and integrates visual, auditory, olfactory, and 
somatosensory stimuli [51]. The region ranging from the 
inferior temporal visual cortex to the tail of the CN forms 
the visual corticostriatal loop that processes visual infor-
mation and contributes to working memory and cogni-
tive strategy selection [44]. As described in the diagnostic 
criteria, photophobia and phonophobia are two key non-
head pain symptoms that are indicative of migraine [52]. 
The visual pathway and some related regions may lead to 

Fig. 4  Correlation between VAS scores, BMI, and FC of the right CN. BMI is positively correlated with FC values between the right CN and the (A) 
Lingual_R (according to the AAL atlas); (B) Lingual_L; (C) Calcarine_R; and (D) Calcarine_L. VAS scores are negatively correlated with FC values between 
the right CN and the (E) Calcarine_L and (F) Lingual_R. Note: The results shown are from two-tailed tests (p < 0.05) for the significance of Pearson’s cor-
relation coefficient. AAL, automated anatomical labeling; VAS, visual analogue scale; BMI, body mass index; L, left; R, right; FC, functional connectivity; CN, 
caudate nucleus.
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the symptoms of migraine. Therefore, our findings sug-
gest that abnormal FC among the sensory-related regions 
reflects deficits in sensory processes in CM patients.

FC values between the CN and the ACC, MCC, lin-
gual gyrus, and precuneus were also higher among CM 
patients than in EM patients. Patients with CM reported 
more somatic complaints—including fatigue, sleep dis-
turbances, and nausea—compared with EM patients [53]. 
Moreover, CM patients are more susceptible to exhibit-
ing comorbid psychiatric disorders, such as depression, 
anxiety, and OCD [40]. Our results provide further sup-
port for these conclusions. However, unlike in previous 
studies, we failed to find any marked differences in the 
CN-based FC between EM patients and HCs. This may 
be related to our seed selection. The seeds used in previ-
ous studies were mostly spherical regions in the CN. The 
neurons of these seeds were responsible for specific func-
tional aspects in the EM population and showed signifi-
cant differences compared with those in HCs. However, 
we used the entire CN based on the AAL template as the 
seed, representing the total function of the CN. There-
fore, differences in CN-based FC values were only appar-
ent between CM patients and HCs, not between EM 
patients and HCs. Similar patterns have been reported 
in a previous study showing that lower levels of GABA/

Water and GABA/Cr were only observed in CM vs. HC 
comparisons, and not in EM vs. HC comparisons [25].

CN-based FC in CM patients with and without MOH
Several imaging studies have reported specific brain 
changes in MOH patients that help differentiate MOH 
from other types of headaches [54]. However, an increas-
ing number of researchers consider MOH to be a com-
plication of other headaches as well [6–9]. CM patients 
with a high frequency of migraine attacks tend to over-
use acute analgesics, which increases the risk of MOH. 
MOH may also contribute to the progression of CM. 
Our results indicated that the combined MOH may not 
lead to significant changes in CN-based FC in CM. An 
FCD study reported that compared with EM patients, 
MOH patients showed lower FCD in the right CN with 
a fronto-temporal-parietal distribution pattern [21]. The 
results of the FCD analysis suggested that the FC in the 
CN decreased in the MOH population without CM but 
increased in the EM population. In our study, the com-
bined MOH was based on the CM diagnosis that means 
MOH developed from CM. We did not include the other 
primary headache and a subgroup of patients with MOH 
evolve from other headache types. Therefore, we can 
only conclude that MOH that developed from CM may 
not influence the FC of the CN. Some evidences showed 

Fig. 5  Schematic diagram of the CM-related functional brain connectivity network. The diagram shows our results about the significantly en-
hanced FC between the CN and brain regions associated with emotion, cognition, and sensory (the calcarine cortex, lingual gyrus, anterior cingulate 
cortex, superior and inferior parietal cortex, precuneus, temporal gyrus, insula, orbital part of the inferior frontal gyrus, and temporal pole of the superior 
temporal gyrus). The black arrows represent enhanced FC. The dotted line represents the tissue located inside the brain. Note: CM, chronic migraine; CN, 
caudate nucleus.
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that CM patients with MOH had improved FC between 
the prefrontal cortex and regions of the CN and fron-
tal cortex within the CEN after treatment[55]. A mag-
netic resonance spectroscopy study suggested that there 
was no difference in neurochemical levels between CM 
patients with and without MOH [25]. Our findings fur-
ther support that MOH is only comorbidity of CM and 
the presence of MOH would not change certain intrinsic 
properties of CM.

Clinical characteristics of CM and correlations with FC 
values
Correlations between FC values of the CN and the char-
acteristics of CM remain unclear. Our results showed 
that FC between the bilateral calcarine cortex, bilateral 
lingual gyrus, and CN were positively correlated with 
BMI. One study found that a higher BMI was associated 
with lower FC in the caudate-dorsolateral prefrontal cor-
tex and higher FC in the caudate-medial temporal lobe 
[56]. The CN is a part of the reward system that is closely 
connected to BMI, and a higher BMI is considered to 
be associated with poorer cognitive flexibility. Previ-
ous studies have observed higher rs-FC values between 
the sensorimotor network and DMN in individuals with 
obesity [57]. Moreover, obesity is also a critical risk factor 
for migraine progression [58, 59]. Based on these find-
ings, we speculate that the dysfunction of right CN-based 
FC with the visual cortex can damage the processing of 
visual information and cause abnormal sensory and cog-
nitive impairments in CM patients, and these dysfunc-
tions may be related to obesity. Susceptible populations 
with higher BMI scores may progress to CM earlier and 
exhibit more severe symptoms.

The VAS scores for headaches were inversely correlated 
with right CN-related FC in the left calcarine cortex and 
right lingual gyrus. The CN has been reported to play an 
essential role in sensory processing and pain inhibition 
[60]. The visual cortex can independently encode and 
differentiate visual cues related to pain anticipation [61]. 
And the pain in turn can alter visual cortex excitability 
that might reflect defensive strategies against pain [62]. 
Based on this, we believe that the functional network of 
the visual cortex and CN is involved in pain perception 
and the regulation of CM.

Study limitations and future directions
This study has three principal limitations that need to be 
addressed in future studies. First, the sample size was rel-
atively small, and the included population may not fully 
represent the characteristics of the entire patient popula-
tion. We seek to enroll a larger population in future stud-
ies to further explore the mechanisms of CM. Second, 
we selected the bilateral CNs as the region of interests. 
The CN is an elongated C-shaped nucleus that consists of 

three subregions: the head, body, and tail. Different sub-
regions of the CN may have unique functions; however, 
we have not discussed the FC of each part separately. 
Third, this was a cross-sectional study, and the results 
did not indicate any specific causal relationships between 
the altered FC of the CN and the formation of CM. In the 
future, we will conduct follow-up visits, connect better 
clinical information, and implement a better study design 
to address these limitations.

Conclusion
We found evidence of multiple functional alterations in 
the brain networks of CM patients. These findings point 
toward a disruption in the pain modulatory system of 
CM patients (comprising emotional, cognitive, and sen-
sory brain networks) and CSTC circuits that further our 
understanding of the clinical manifestation and patho-
genesis of CM. MOH (a comorbidity of CM) and gender 
differences had no influence on the FC of the CN. Cor-
relations between the FC and clinical data suggested that 
the CN was an important brain area that might have a 
certain pattern of interaction with the BMI and head-
ache intensity of CM patients through a series of intrin-
sic brain networks. Above all, aberrant FC of the CN can 
provide potential neuroimaging markers for diagnosis 
and treatment of CM.
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