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opioid receptors?
Caroline M. Kopruszinski1, Robson Vizin1, Moe Watanabe1, Ashley L. Martinez1, 
Luiz Henrique Moreira de Souza1, David W. Dodick2, Frank Porreca1,3 and Edita Navratilova1,3* 

Abstract 

Background:  The migraine premonitory phase is characterized in part by increased thirst, urination and yawning. 
Imaging studies show that the hypothalamus is activated in the premonitory phase. Stress is a well know migraine ini-
tiation factor which was demonstrated to engage dynorphin/kappa opioid receptors (KOR) signaling in several brain 
regions, including the hypothalamus. This study proposes the exploration of the possible link between hypothalamic 
KOR and migraine premonitory symptoms in rodent models.

Methods:  Rats were treated systemically with the KOR agonist U-69,593 followed by yawning and urination moni-
toring. Apomorphine, a dopamine D1/2 agonist, was used as a positive control for yawning behaviors. Urination and 
water consumption following systemic administration of U-69,593 was also assessed. To examine if KOR activation 
specifically in the hypothalamus can promote premonitory symptoms, AAV8-hSyn-DIO-hM4Di (Gi-DREADD)-mCherry 
viral vector was microinjected into the right arcuate nucleus (ARC) of female and male KORCRE or KORWT mice. Four 
weeks after the injection, clozapine N-oxide (CNO) was administered systemically followed by the assessment of 
urination, water consumption and tactile sensory response.

Results:  Systemic administration of U-69,593 increased urination but did not produce yawning in rats. Systemic KOR 
agonist also increased urination in mice as well as water consumption. Cell specific Gi-DREADD activation (i.e., inhibi-
tion through Gi-coupled signaling) of KORCRE neurons in the ARC also increased water consumption and the total 
volume of urine in mice but did not affect tactile sensory responses.

Conclusion:  Our studies in rodents identified the KOR in a hypothalamic region as a mechanism that promotes 
behaviors consistent with clinically-observed premonitory symptoms of migraine, including increased thirst and uri-
nation but not yawning. Importantly, these behaviors occurred in the absence of pain responses, consistent with the 
emergence of the premonitory phase before the headache phase. Early intervention for preventive treatment even 
before the headache phase may be achievable by targeting the hypothalamic KOR.
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Background
Migraine is a multiphasic neurological disorder that 
commonly includes a premonitory period, aura in some 
patients, headache, post-drome and interictal stages [1, 
2]. These phases often, but not always, occur in a tempo-
ral sequence, with the premonitory phase preceding the 
headache phase by hours to days [3–5]. The mechanistic 
basis of non-painful symptoms of migraine is relatively 
poorly understood [3]. These symptoms, however, can 
be as disabling as the migraine-related headache attack 
[3]. While the prevalence of individuals experiencing 
migraine premonitory symptoms is not fully known, sev-
eral studies report that such symptoms occur in approxi-
mately 80% of adult individuals with migraine [6–8]. As 
premonitory symptoms generally suggest impending 
headache pain attack, interventions at this stage are usu-
ally more effective in preventing the subsequent disabling 
headache phase of this disorder. Whether neural mech-
anisms underlying the premonitory phase are directly 
linked to activation of pain pathways and the develop-
ment of the headache during a migraine attack is not 
known. Further mechanistic understanding of the pre-
monitory phase is essential to unraveling the early neu-
robiology of migraine, opening avenues for implementing 
new therapeutic strategies.

Sleep disturbance, fatigue, mood changes, yawning, 
thirstiness, food cravings, polyuria, and photophobia are 
the most common clinically reported premonitory symp-
toms [1–3]. The distinct premonitory features reported 
by patients implicate involvement of multiple areas of 
the brain [1–3, 5, 9–12]. One key area likely to be asso-
ciated with many of the observed clinical symptoms is 
the hypothalamus [1–3, 5, 10–13]. Imaging studies have 
revealed that the hypothalamus is activated prior to the 
pain phase of migraine [5, 14–16]. Numerous hypotha-
lamic neurotransmitters have also been implicated in 
migraine neurobiology, including dopamine, somatosta-
tin, vasopressin, PACAP, oxytocin and orexin [3, 11, 12]. 
The hypothalamus is a part of the descending pain mod-
ulatory pathway and sends neural projections to brain 
regions known to be associated with migraine, including 
the midbrain periaqueductal gray (PAG) [1, 3, 5, 9, 10, 
13, 17]. Hypothalamic dopaminergic cells also project to 
the trigeminocervical complex where trigeminal afferent 
nociceptive signals may be modulated [3, 13]. However, 
whether these, or other hypothalamic mechanisms may 
be linked to some, or all, premonitory symptoms has not 
been sufficiently investigated.

Stress, or relief of stress, has been commonly linked to 
onset of migraine attacks [1, 18–21]. Preclinical studies 
have shown that the dynorphin/kappa opioid receptor 
(KOR) system is activated by stress [21–24]. The dynor-
phin/KOR pathway is widely distributed in multiple brain 
regions, including the hypothalamus, and its activation 
could play a role in modulation of homeostasis, pain, 
sleep, appetite and others [25, 26]. Stressful events can 
promote a lack of sleep, increased fatigue and anorexia, 
all of which have been reported during the premonitory 
phase of migraine [27, 28], suggesting a possible link to 
hypothalamic KOR signaling. As stress engages KOR-
expressing neurons in the hypothalamus of mice, includ-
ing the arcuate nucleus (ARC) [25, 29, 30], we tested the 
hypothesis that systemic KOR agonists or cell-specific 
Gi-DREADD activation of ARC KORCRE expressing neu-
rons could promote premonitory symptoms in rodents. 
Specifically, we evaluated possible links between KOR 
activation and increased urination, water consumption 
and yawning behaviors, as well as possible effects on pain 
behaviors.

Methods
Animals
Studies were performed using 200–250 g female and male 
Sprague Dawley rats (Harlan Laboratories, Indianapo-
lis, IN, USA) and 6-week-old female and male C57BL6/J 
mice (Jackson Laboratory, Sacramento, CA, USA). 
KORCRE female and male mice [31] were kindly provided 
by Dr. Sarah E. Ross (University of Pittsburgh, Pittsburgh, 
PA, USA) and were crossed with C57BL/6  J mice for 
more than six generations; heterozygous mice are des-
ignated as KORCRE, wild type littermates as KORWT. A 
total of 6 female rats, 6 male rats, 38 female mice and 32 
male mice were used in this study. Animals were housed 
in a room on a 12/12-h light/dark cycle (7 am to 7  pm 
lights on), with controlled temperature and humidity 
and with free access to food and water in the University 
of Arizona animal facility. A total of 125 animals were 
used in these studies, with 8—13 animals per group for 
behavior evaluation. All experimental procedures were 
performed in accordance with the ARRIVE guidelines, 
the ethical guidelines of the International Association for 
the Study of Pain regulations on animal welfare, and the 
National Institutes of Health guidelines for the care and 
use of laboratory animals. The experimental procedures 
were approved by the Institutional Animal Care and Use 
Committee of the University of Arizona. Animals were 
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randomly divided into control, and experimental groups, 
and experiments were blinded for the treatment and/or 
genotype.

Drugs
U-69,593 (Abcam, Cambridge, UK) was diluted in a 5% 
(2-Hydroxypropyl)-β-cyclodextrin (Sigma, St. Louis, MO, 
USA) solution and administered subcutaneously (s.c.) at 
0.56 and 30  mg/kg. R-( −)-Apomorphine hydrochloride 
hemihydrate (Sigma, St. Louis, MO, USA) was diluted 
in saline and administered s.c. at 0.05  mg/kg. AAV8-
hSyn-DIO-hM4Di (Gi-DREADD)-mCherry viral vector 
(44,362-AAV8, Addgene, Watertown, MA, USA) and 
was stereotaxically injected at 100 nL (1 × 1010 vg/100 
nL at 20 nL/min speed) into the right ARC. Clozapine-
N-Oxide (CNO) (TOCRIS, Minneapolis, MN, USA) 
was injected intraperitoneally (i.p.) at 5 mg/kg. Controls 
received the respective vehicles at 10 mL/kg.

Stereotaxic surgery for virus injection in mice
Mice were positioned in a stereotaxic head holder (KOPF 
Instruments, Tujunga, CA, USA) under inhalational 
anesthesia (2–5% isoflurane). An incision was made on 
the animal’s skin to localize the skull suture bregma. A 
surgical drill (KOPF Instruments, Tujunga, CA, USA) 
was used to produce a hole in the skull followed by glass 
pipette insertion into the right ARC of the hypothala-
mus according to the proper coordinates (AP -1.4  mm, 
ML + 1.2  mm, DV -5.8  mm with a 10° angle). The Gi-
DREADD virus was injected slowly (20 nL/min), glass 
pipet removed and the hole on the skull was closed with 
bone wax with the skin sutured. Animals were carefully 
monitored for 5 days after surgery until complete recov-
ery. Mice were kept for four weeks at the animal care 
facility before the testing to allow the virus expression.

Yawning in rats
Yawning is a common behavior in rats and has been 
widely studied. Rats were placed in individual clear Plexi-
glass chambers for a one-hour acclimation. A video cam-
era was placed in front of the chambers. Animals then 
received an s.c. injection of apomorphine, U-69,593 or 
control. Yawning behavior was recorded for 120 min after 
the treatment, and the number of yawning episodes dur-
ing this interval was counted.

Assessment of polyuria and water consumption in mice 
and rats
Four weeks after hypothalamic administration of the 
Gi-DREADD virus, mice were placed in individual 
clear Nalgene metabolic cages (PGC International, 
Palm Desert, CA, USA) for one-hour acclimation with 
free access to water. After acclimation, all animals were 

injected subcutaneously with 1  mL of 0.9% of sodium 
chloride to allow hydration, followed by a systemic 
injection of CNO (5  mg/kg, i.p.) and were immedi-
ately placed back into the metabolic cages. Naïve mice 
received a systemic injection of either U-69,593 or 
vehicle instead of CNO. The total volume of urine and 
water consumption were quantified at 120  min after 
treatment. Increased volume of urine was considered as 
an outcome measure of polyuria (increased urination).

Quantitative evaluation of polyuria in rats was per-
formed by placing individual absorbable underpads 
below each clear Plexiglass chamber. Rats were accli-
mated in the chambers for a one-hour followed by an 
s.c. injection of apomorphine, U-69,593 or vehicle. 
The weight of the absorbable underpads was collected 
prior to and 120 min after the treatment. The amount 
of urine was approximated by calculating the differ-
ence between the weight of the individual underpads 
before and after the treatment. Significant increase in 
the amount of urine in test groups compared to vehi-
cle treated rats was considered as a measure of polyuria 
(increased urination).

Evaluation of cephalic and extracephalic allodynia
The periorbital (cephalic) and hindpaw (extracephalic) 
tactile sensory responses were evaluated before and 
after the hypothalamic Gi-DREADD virus injection and 
CNO administration. Mice were placed individually 
in suspended clear Plexiglas chambers with wire mesh 
floors for two hours to habituate before testing. Tactile 
response frequency was measured by the perpendicular 
application of von Frey filaments (Touch Test sensory 
evaluators; Stoelting, Wood Dale, IL, USA) applied to 
the periorbital region (0.4  g filament), at the center of 
the forehead, or the plantar surface of the hindpaw (1 g 
filament). The filaments were applied 10 times each, 
and the number of responses after the filament applica-
tion were counted. Swiping the face, shaking the head, 
and/or turning away from the stimuli were considered 
positive periorbital responses. Sharp withdrawal, shak-
ing and/or licking the paw were considered positive 
hindpaw responses. Frequency response (in percent) 
was calculated as (number of positive responses/10) * 
100%.

Baseline responses for periorbital and hindpaw tactile 
stimulation with von Frey filaments were collected in 
male and female mice prior to Gi-DREADD administra-
tion into the right ARC. After 4 weeks, baseline perior-
bital and hindpaw sensory responses were measured and 
KORCRE and KORWT mice received a single systemic 
injection of CNO followed by sensory responses assess-
ment again intermittently for 5 h.
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Statistical analysis
The sample size was calculated using the GPower 3.1 
software. Statistical analyses were calculated using 
GraphPad Prism 8 (GraphPad Software, La Jolla, CA, 
USA). D’Agostino-Pearson normality test was performed 
prior to the further statistical analysis. One or two-way 
analysis of variance (ANOVA) followed by Tukey’s post 
hoc test were used to analyze yawning, polyuria, and 
water consumption in rats. The Student’s t-test was used 
to analyze urination, and water consumption data in 
mice. Two-way analysis of variance (ANOVA) followed 
by the Sidak test was used for the analysis of the time 
course experiments for tactile sensory thresholds. Linear 
regression was performed to analyze the possible corre-
lation between water consumption and volume of urine 
(urination). Data are presented as mean ± SEM, and “n” 
represents the number of animals analyzed. Statistical 
significance was set to an alpha level of 0.05. The num-
bers of animals used, p values, and F ratios are reported 

in Table 1. Due to the lack of statistical sex differences in 
the tests, male and female data were combined in Figs. 1, 
2, 3 and 4.

Results
Systemic KOR agonist increased urination but not yawning 
in both female and male rats
Subcutaneous administration of the potent D1 and 
D2 dopaminergic agonist, apomorphine at 0.05  mg/
kg, induced a pronounced increase in yawning behav-
ior in both female and male rats compared to the con-
trol group. In contrast, the systemic administration 
of the KOR agonist, U-69,593 at 0.56 mg/kg, failed to 
induce yawning behavior in rats (Fig.  1A). However, 
the injection of U-69,593 significantly increased uri-
nation (Fig. 1B) when compared to the control group. 
Control-treated rats did not demonstrate significant 
changes in the yawning behavior or urination through-
out the experimental time course (Fig. 1A and B). The 

Table 1  Summary of statistical analyses

p values, interaction F ratios and n for statistical analyses used in Figs. 1, 2, 3 and 4 and supplementary figure S1

Figure Analysis Interaction p Interaction F n

1A Two-way ANOVA
Tukey

p < 0.0001 F (6, 99) = 44.57 12
(6 female/group)
(6 male/group)

1B One-way ANOVA
Tukey

p < 0.0001 F (2, 33) = 22.97 12
(6 female/group)
(6 male/group)

2A Student’s
t-test

p = 0.0005 F = 2.223, 11, 11 12
(6 female/group)
(6 male/group)

2B Student’s
t-test

p = 0.0066 F = 9.179, 11, 11 12
(6 female/group)
(6 male/group)

2C Linear regression P = 0.3564 F = 0.9349 12
(6 female/group)
(6 male/group)

3A Student’s
t-test

p = 0.0040 F = 10.06, 12, 10 11 – 13
(5 female/6 male WT)
(6 female/7 male HET)

3B Student’s
t-test

p = 0.0427 F = 1.819, 12, 9 10 – 13
(5 female/5 male WT)
(6 female/7 male HET)

3C Linear regression p = 0.6570 F = 0.2083 10 – 13
(5 female/5 male WT)
(6 female/7 male HET)

4A Two-way ANOVA
Sidak

p = 0.7502 F (6, 144) = 0.5744 13
(7 female/6 male WT)
(6 female/7 male HET)

4B Two-way ANOVA
Sidak

p = 0.3254 F (6, 144) = 1.17 13
(7 female/6 male WT)
(6 female/7 male HET)

S1A Student’s
t-test

p = 0.9247 F = 3.979, 7, 7 8
(8 female/group)

S1B Student’s
t-test

p = 0.6243 F = 1.2, 7, 7 8
(8 female/group)
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main purpose of this experiment was to determine if 
systemic administration of KOR agonist, U-69,593 
would produce yawning behavior in rats and urination 
was measured as a secondary outcome and to confirm 
the engagement of KOR.

Systemic U‑69,593 increased water consumption 
and polyuria in female and male mice
Systemic administration of U-69,593 at 30  mg/kg 
(Fig.  2) increase both water consumption (Fig.  2A) 
and volume of urine (polyuria) (Fig. 2B) in female and 

Fig. 1  Systemic KOR agonist, U-69,593, failed to induce yawning behavior but increased urination in both female and male rats. A The number of 
yawning events and, B the increase in urination were evaluated for 120 min after a single subcutaneous administration of U-69,593 at 0.56 mg/kg, 
apomorphine at 0.05 mg/kg (a non-selective dopamine agonist used as a positive control for yawning) and vehicle-control. The number of yawning 
was quantified in 30-min intervals. Urination was quantified as the difference between the weight of the individual absorbable underpads before 
drug administration and 120 min after testing. Female and male data were combined. Data are presented as mean ± SEM and analyzed using 
two-way (A) or one-way (B) ANOVA followed by Tukey’s multiple comparison test with * representing p < 0.05 in comparison with the control group 
(n = 12; 6 females/group and 6 males/group)

Fig. 2  Systemic U-69,593 increased water consumption and urination in female and male mice. Mice were individually placed in metabolic 
chambers and received a single subcutaneous administration of U-69,593 at 30 mg/kg or vehicle-control. A Water consumption and B volume of 
urine, as outcome measurements of thirst and polyuria, respectively, were evaluated for 120 min after treatment. C Linear regression was performed 
to evaluate the correlation between water consumption and urination in U-69,593-treated mice. Female and male data were combined. Data are 
presented as mean ± SEM and analyzed using one-way ANOVA followed by Sidak’s multiple comparison test with * representing p < 0.05 compared 
to the control group (n = 12; 6 females/group and 6 males/group)
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male mice when compared to vehicle-treated mice. Lin-
ear regression revealed a lack of correlation between 
increased water consumption and volume of urine after 
U-69,593 administration (Fig. 2C). Water consumption 

(Supplemental Fig.  1A) and volume of urine (Supple-
mental Fig.  1B) was not altered after systemic admin-
istration of U-69,593 at a lower dose of 0.56  mg/kg in 
female mice.

Fig. 3  Chemogenetic manipulation of KORCRE neurons in the ARC increased water consumption and urination in both female and male mice. 
KORCRE or KORWT female and male mice were individually placed in metabolic chambers and received a single dose of CNO (DREADD specific 
agonist; 5 mg/kg, i.p.) four weeks after stereotaxic administration of AAV8-hSyn-DIO-hM4D(Gi)-mCherry virus (100 nL) into the right ARC. A Water 
consumption and B volume of urine, as outcome measurements of thirst and polyuria, respectively, were evaluated for 120 min after treatment. 
C Linear regression was performed to evaluate the correlation between water consumption and urination in KOR.CRE mice. Female and male data 
were combined. Data are presented as mean ± SEM and analyzed using one-way ANOVA followed by Sidak’s multiple comparison test (A) and (B) 
with * representing p < 0.05 compared to the control group (n = 10 – 13; Panel A: 5 females/6 males WT and 6 females/7 males HET; Panels B and C: 
5 females/5 males WT and 6 females/7 males HET)

Fig. 4  Chemogenetic manipulation of KORCRE neurons in the ARC did not modify periorbital and hindpaw tactile responses in female and male 
mice. Frequency of response to tactile stimulation in the A periorbital and B hindpaw region was performed before AAV virus injection (BL1), 
4 weeks after the injection (BL2), and hourly up to 5 h after administration of CNO (5 mg/kg, i.p.) in KORCRE or KORWT mice. Data from female and 
male mice were combined and are presented as mean ± SEM. Statistical analysis was performed using two-way ANOVA followed by Sidak’s multiple 
comparison test (A) and (B) (n = 13; 7 females/6 males WT and 6 females/7 males HET)
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Chemogenetic activation of Gi‑DREADD in KORCRE neurons 
in the ARC increased water consumption and urination 
in both female and male mice
Four weeks after the injection of AAV8-hSyn-DIO-
hM4D(Gi)-mCherry virus into the right ARC, 
cre-dependent expression of hM4D(Gi)-mCherry (Gi-
DREADD) (red) was confirmed in female (Supplemental 
Fig. 2A) and male (Supplemental Fig. 2B) KORCRE mice, 
but no expression was observed in KORWT littermates. 
Significantly increased water consumption (Fig. 3A) and 
volume of urine (Fig. 3B) was observed following a single 
systemic dose of CNO, a Gi-DREADD specific agonist, in 
KORCRE/Gi-DREADD female and male mice in compari-
son to KORWT control groups. Linear regression revealed 
a lack of correlation between increased water consump-
tion and volume of urine after CNO administration in 
KORCRE/Gi-DREADD mice (Fig. 3C).

Chemogenetic activation of hM4D(Gi) in ARC KORCRE 
neurons did not produce periorbital or hindpaw allodynia 
in female and male mice
Expression of Gi-DREADD in the right ARC did not 
modify baseline tactile frequency of response in the 
periorbital (Fig.  4A) and hindpaw (Fig.  4B) regions of 
KORCRE/Gi-DREADD mice. Similarly, no changes were 
observed in KORWT mice that underwent the same stere-
otaxic surgery and virus injection but did not express 
Gi-DREADD. A single administration of CNO, 4  weeks 
after virus injection, did not modify periorbital (Fig. 4A) 
and hindpaw (Fig.  4B) frequency of response to tactile 
stimulation in KORCRE/Gi-DREADD or KORWT female 
and male mice and there was no difference between the 
KORCRE and KORWT groups.

Discussion
The hypothalamus is involved in the regulation of many 
aspects of the body homeostasis, adjusting the drive to 
eat, drink, sleep, and to control the body temperature 
according to necessity [32–34]. In addition, the hypo-
thalamus can also be implicated in behaviors of expel-
ling or retaining urine [33–36]. Clinical imaging studies 
have demonstrated hypothalamic activation prior to the 
migraine-related headache attack, consequently associat-
ing activation of this brain region with the premonitory 
phase [5, 14–16]. We can speculate that some premoni-
tory symptoms might occur due to hypothalamic activa-
tion induced by an imbalance of the body homeostasis, 
which can be considered a stressor, for example, skip-
ping meals, dysregulated sleep, not drinking enough 
water, events described as migraine triggers. Hypotha-
lamic activation might ultimately engage the dynorphin/
KOR stress system to produce some of the premonitory 
symptoms. Corroborating to this idea, increased levels 

of dynorphin in the hypothalamus have been observed in 
mice deprived of food and/or water, likely reflecting the 
generalized activation of stress circuits [37, 38]. The cur-
rent study explored the possible link between KOR sign-
aling in the hypothalamus in eliciting effects in rodents 
what could mimic, in part, symptoms observed dur-
ing the premonitory phase of migraine including yawn-
ing, polyuria and increased thirst. Our data suggest that 
hypothalamic KOR activation promotes an increase in 
urination and thirst, but not yawning behaviors, without 
affecting tactile sensory thresholds, in female and male 
rodents.

Yawning is one of the symptoms reported by individu-
als with migraine during the premonitory phase [39]. 
Several hypothalamic nuclei have been implicated in 
the mediation of yawning, including the dorsomedial 
nucleus, ventromedial nucleus, and anterior hypothala-
mus, but mainly the paraventricular nucleus (PVN) [40–
42]. Yawning behavior in rodents can be elicited through 
a multitude of mechanisms but include especially dopa-
minergic agonists. In this study, we used apomorphine, 
a dopaminergic D1/2 agonist to demonstrate yawning 
(i.e., as a positive control) [43]. Systemic administration 
of apomorphine produced robust and significant yawn-
ing behavior in rats, most likely through the activation 
of hypothalamic dopaminergic receptors as previously 
reported [43]. As hypothalamic KOR positive neurons 
are known to express dopamine [44–46], we hypoth-
esized that KOR activation might promote increased 
yawning behavior. However, our data showed that sys-
temic administration of U-69,593 failed to induce yawn-
ing behavior in female and male rats. Previous reports 
have shown that PVN administration of U-69,593 in 
rats did not affect yawning induced by systemic apo-
morphine or intracerebroventricular oxytocin, however, 
these authors did not evaluate the direct effect of hypo-
thalamic administration of the KOR agonist on yawning 
[47]. Thus, the KOR may not play a significant role in the 
yawning behavior commonly observed in the migraine 
premonitory phase.

Polyuria and increased thirst are also commonly 
reported premonitory symptoms of migraine [1–3]. Our 
study revealed that systemic administration of U-69,593 
increased urination in female and male rats and mice. 
It is important to point out that while different doses of 
U-69,593 were used in the mouse and rat experiments all 
doses revealed the metabolic effects resulting from KOR 
engagement. Systemic administration of KOR agonists 
has been widely reported to produce diuretic effects in 
many species [48–51] including humans [52–56]. Both 
central and peripheral mechanisms are associated with 
KOR-induced diuresis [57]. KOR agonists can act in the 
hypothalamus to produce diuresis [58–60]. Preclinical 
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studies have suggested that KOR agonists induced diu-
resis by reducing the levels of vasopressin [61–64]. 
Peripheral mechanisms also contribute to modulation of 
sympathetic neural outflow to the kidneys from periph-
erally restricted KOR agonists which can also induce diu-
resis in rats [65–69]. Likewise, diuresis is a side-effect of 
CARA845 (i.e., Korsuva), a peripherally restricted KOR 
agonist that has recently been approved by the FDA for 
the treatment of itch [70]. Furthermore, we observed 
that systemic administration of U-69,593 increased water 
consumption in mice suggestive of increased thirst. Lee 
and colleagues have demonstrated that systemic admin-
istration of KOR agonists produced delayed increase in 
the water consumption of rats [71]. Thus, the increased 
urination and water consumption observed in our study 
following systemic KOR agonist are consistent with the 
hypothesis that KOR activation can promote polyuria 
and thirstiness associated with the premonitory phase 
of migraine but could result from central mechanisms, 
peripheral mechanisms, or both.

For this reason, we employed a chemogenetic strategy 
to determine if KOR expressing cells in the hypothala-
mus might be specifically responsible for polyuria and 
increased water consumption. We found that activa-
tion of a Gi-coupled DREADD (i.e., inhibition through 
Gi-coupled signaling) in KORCRE neurons in the ARC 
increased urination in both female and male mice. It 
should be noted that the Gi-DREADD expressing virus 
was injected unilaterally into the right ARC. Based on 
previous electrophysiological studies, the manipulation 
of neuronal activity on one side of this hypothalamic 
nucleus may affect the activity of the other side [72]. 
These findings are consistent with previous reports that 
demonstrate that hypothalamic administration of KOR 
agonists produced diuresis in rats [58, 60]. The hypo-
thalamus is also known to receive inputs from lateral 
terminalis neurons, which sense and detect the neces-
sity for fluid consumption [73, 74]. Mogenson and Ste-
venson demonstrated that electrical stimulation of the 
lateral hypothalamus (LHA) of rats increased water 
consumption [75], whereas lesion of the LHA caused 
dehydration [76, 77]. Herein, Gi-DREADD activation in 
KORCRE neurons in the mouse ARC with a single dose 
of CNO increased water consumption. Thus, our study 
revealed that activation of KOR in the ARC might play 
a significant role in diuresis and fluid intake homeostasis 
possibly associated with the premonitory migraine symp-
toms. It has previously been suggested that increased 
water consumption promoted by KOR agonists could 
be due to excessive urination [71]. However, we found 
no correlation between increased water consumption 
and increased urination after systemic administration of 
U-69,593 and after Gi-DREADD activation of KORCRE 

neurons, suggesting that these symptoms are unlikely 
to be causally related. Moreover, our data show that the 
increased urination and water consumption observed 
following ARC Gi-DREADD KORCRE activation did not 
alter periorbital and hindpaw tactile responses, suggest-
ing that this mechanism might contribute to some of the 
premonitory symptoms in the absence of pain.

Conclusions
The present study evaluated some proposed premoni-
tory symptoms of migraine using multiple methods and 
approaches, as well as different rodent species and both 
sexes to provide increased rigor and confidence in con-
clusions. To our knowledge, this is the first preclini-
cal study that attempts to unravel the mechanisms that 
may underlie the premonitory phase of migraine. Some 
limitations of our study should be noted. Imaging studies 
demonstrate activation of the hypothalamus as a whole 
in the premonitory phase, but here, we only studied the 
ARC nucleus. Other hypothalamic areas and mecha-
nisms may play a significant role in these, or other pre-
monitory symptoms. Sleep disruption is also observed 
in the premonitory phase of migraine. While the pre-
sent study did not directly measure sleep after systemic 
administration of U-69,593 or Gi-DREADD KOR activa-
tion, recent work from our laboratory has demonstrated 
that KOR in the hypothalamic paraventricular nucleus 
promotes insomnia in mice [78]. Determining the role of 
KOR activation in different hypothalamic nuclei and in 
additional premonitory symptoms, including sleep, food 
craving, and mood change will require further investi-
gation. Some reports have suggested differences in the 
dynorphin/KOR system in men and women in several 
brain regions, including the hypothalamus [79]. However, 
in the present study, we did not observe significant sex 
differences elicited by systemic administration of KOR 
agonist or hypothalamic KOR activation in increased uri-
nation or water consumption.

We previously reported that KOR antagonists might be 
considered for prevention of stress-related migraine [21, 
24]. Consistent with this proposition, we now show that 
cell-specific manipulation of KOR-expressing neurons in 
the ARC of the hypothalamus of female and male mice 
produced polyuria and increased water consumption, but 
not yawning or pain responses, suggesting relevance to 
clinically observed premonitory symptoms of migraine. 
Understanding the neurobiology of the premonitory 
phase may allow for the development of treatments that 
may be given early in migraine attacks to prevent pro-
gression to a full-blown syndrome that includes the 
headache phase.
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