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Abstract

Background: Accumulating studies have indicated a wide range of brain alterations with respect to the structure
and function of classic trigeminal neuralgia (CTN). Given the dynamic nature of pain experience, the exploration of
temporal fluctuations in interregional activity covariance may enhance the understanding of pain processes in the
brain. The present study aimed to characterize the temporal features of functional connectivity (FC) states as well as
topological alteration in CTN.

Methods: Resting-state functional magnetic resonance imaging and three-dimensional T1-weighted images were
obtained from 41 CTN patients and 43 matched healthy controls (HCs). After group independent component
analysis, sliding window based dynamic functional network connectivity (dFNC) analysis was applied to investigate
specific FC states and related temporal properties. Then, the dynamics of the whole brain topological organization
were estimated by calculating the coefficient of variation of graph-theoretical properties. Further correlation
analyses were performed between all these measurements and clinical data.

Results: Two distinct states were identified. Of these, the state 2, characterized by complicated coupling between
default mode network (DMN) and cognitive control network (CC) and tight connections within DMN, was expressed
more in CTN patients and presented as increased fractional windows and dwell time. Moreover, patients switched less
frequently between states than HCs. Regarding the dynamic topological analysis, disruptions in global graph-
theoretical properties (including network efficiency and small-worldness) were observed in patients, coupled with
decreased variability in nodal efficiency of anterior cingulate cortex (ACC) in the salience network (SN) and the
thalamus and caudate nucleus in the subcortical network (SC). The variation of topological properties showed negative
correlation with disease duration and attack frequency.
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Conclusions: The present study indicated disrupted flexibility of brain topological organization under persistent noxious
stimulation and further highlighted the important role of “dynamic pain connectome” regions (including DMN/CC/SN) in the
pathophysiology of CTN from the temporal fluctuation aspect. Additionally, the findings provided supplementary evidence
for current knowledge about the aberrant cortical-subcortical interaction in pain development.

Keywords: Trigeminal neuralgia, Chronic pain, Resting-state functional MRI, Dynamic functional connectivity, Dynamic pain
connectome

Background
Classic trigeminal neuralgia (CTN) is a chronic pain dis-
order, characterized by unilateral paroxysmal electric
shock-like or stabbing painful affliction of the face, which
is limited to the trigeminal territory [1]. With disease pro-
gression, episodes of pain occur more frequently and sus-
tainably, which seriously impacts the patient’s physical
and psychological health [2]. CTN has been generally at-
tributed to the nerve vessel conflict (NVC) at the nerve
root entry zone [3]. However, accumulating evidence sug-
gests that the involvement of centrally mediated facilita-
tion of pain processing or reduced descending inhibitory
mechanisms play an important part in the CTN pathogen-
esis [4, 5]. Therefore, the central nervous system mechan-
ism of CTN has now become a research focus.
To noninvasively map brain activity, resting state func-

tional magnetic resonance imaging (rs-fMRI) has been
widely used which has further revealed several critical
brain regions of CTN, including the default mode-, the
salience-, the subcortical- and the sensorimotor net-
works [6–11]. These regions are closely related to pain
perception, modulation, the cognitive-affective inter-
action, and motor control [12]. Aberrant information
transfer within and across brain networks and maladap-
tive brain plasticity in CTN patients may underpin dis-
ease pathogenesis [7]. Notably, the aforementioned rs-
fMRI studies assumed that the brain connectivity pattern
is stationary during scan sessions. However, actual brain
activity is highly dynamic and condition-dependent [13].
Correspondingly, recent findings suggested that resting-
state functional connectivity (rsFC) can fluctuate spon-
taneously on multiple time scales [14, 15].
As an intrinsically dynamic experience encoded by

“pain connectome ”[16], pain fluctuates spontaneously
over time and is influenced by many dynamic factors
[17–19]. It is the uncovering of dynamics in FC across
time scales and its interaction with external factors that
helps improve the understanding of the central pain pro-
cesses [20]. Recently, one dynamic regional homogeneity
study detected temporal alteration about spontaneous
neural activity in TN patients [21], but did not focus on
changes in dynamic FC. However, dynamic functional
network connectivity (dFNC) analysis can not only pro-
vide time-varying information of FC between resting-
state connectivity networks (RSNs )[13], but also capture

reproducible connectivity states and calculate temporal
properties. dFNC has been applied in chronic pain stud-
ies such as those on migraine [22, 23], low back pain
[24], and primary dysmenorrhea [25], and has been indi-
cated as a useful potential biomarkers of pain and bee
effective to provide insights on disease pathogenesis
[26]. However, the exploration of changes of the whole-
brain dFNC pattern in CTN is still limited.
Previously, some rs-fMRI studies using graph theory

have attempted to characterize the global brain modular-
ity as well as key nodal features in CTN to elucidate the
reorganization processes of brain networks [8, 27]. Given
that the FC between brain regions is constrained by the
brain topological organization [28], aberrant dFNC pat-
tern may be additionally accompanied by altered dy-
namic topological properties.
In this study, we applied sliding window approach based

on rs-fMRI to investigate the time-varying characteristics of
CTN patients. Specifically, CTN specific dFNC state was
identified and diverse temporal properties were calculated to
assess brain dynamics. Moreover, dynamic graph theoretic
analysis was used to investigate the temporal changes of glo-
bal and nodal topological organization. We hypothesized
that CTN patients would show altered temporal properties
coupled with aberrant network topological dynamics, which
would be correlated with clinical characteristics.

Methods
Participants and clinical characteristics assessment
In total, this study included 43 patients with CTN
matched for age, sex, and education with 45 healthy con-
trols (HCs). All patients were recruited from Lanzhou
University Second Hospital and diagnosed according to
the International Classification of Headache Disorders
(ICDH-III )[2] by two experienced neurologists. NVC was
demonstrated for all patients on either MRI or during sur-
gery. The inclusion criteria were as follows: (1) duration of
disease was > 1 years; (2) unilateral pain in the area inner-
vated by one or more branches of the trigeminal nerve; (3)
paroxysmal pain, described as electric shock-like, shooting
or stabbing experience, activated by trigger factors or in
the trigger areas; and (4) absence of obvious sensory defi-
cits. The exclusion criteria were as follow: (1) CTN with
concomitant continuous pain; (2) surgical history, espe-
cially microvascular decompression (MVD) for CTN, or a

Zhang et al. The Journal of Headache and Pain          (2021) 22:147 Page 2 of 16



history of head trauma; (3) presence of any other pain dis-
orders or neuropsychiatric disease, (4) metal implants in
the body, particularly metallic fixed dentures; and (5) ab-
normal MR manifestation (including severe white matter
lesions with Fazekas grade 3 and evidence of multiple
sclerosis or space-occupying lesions that indicate second-
ary TN )[9]. All CTN patients all received medical treat-
ment, of which carbamazepine was the most common,
followed by mecobalamin. Details about medicine use his-
tory can be seen in Table 1. No controls about patients’
treatment were taken. The research was approved by the
Ethics Committee of Lanzhou University Second Hospital.
According to the Declaration of Helsinki, written consent
was obtained from every participant after the study details
were explained to the patients.
The pain intensity of CTN patients was recorded with

visual analogue scale (VAS) ranging from 0 (no pain) to
10 (worst imaginable pain). Patients were required to
rate their pain intensity in the last 7 days by marking on
the 100-mm questionnaire line, which was then averaged
to obtain the weekly score. All questionnaire assessment
was performed under the supervision of experimenters.

MRI data acquisition
Structural MRI and rs-fMRI data were acquired on a 3.0 T
Siemens Verio MRI system (Siemens Medical System, Er-
langen, Germany) with an 8-channel head coil. During
scanning, participants were instructed to stay awake and re-
laxed but to keep their eyes closed, with earplugs and foam
padding used to attenuate noise and reduce head motion.
High-resolution three-dimensional structural images were
acquired using sagittal Magnetization Prepared Rapid Gra-
dient echo sequence (field of view: 256 × 256mm; matrix:
256 × 256; time of repetition = 1900ms; time of echo =
2.93ms; resolution = 1 × 1mm; flip angle = 9°). The rs-
fMRI images were acquired via an echo-planar imaging
(EPI) sequence (180 volumes, 36 contiguous slices, FOV,
192 × 192mm, matrix: 64 × 64, spatial resolution = 3 × 3 ×

3mm; TR = 2000ms; TE =30ms; flip angle = 90°). An expe-
rienced radiologist inspected the previous MR images of
these participants to ensure that each patient was free of
abnormalities as described in above exclusion criteria (5).

fMRI data preprocessing and head motion analysis
The rs-fMRI data were preprocessed with the toolbox for
Data Processing & Analysis of Brain Imaging (DPABI,
http://rfmri.org/dpabi )[29]. The first 10 volumes of the
functional images were discarded. The remaining volumes
underwent slice-time correction, and were then realigned
to correct the motion between time points, wherein, head
motion parameters were computed by estimating the
translation in each direction and the angular rotation on
each axis for each volume. As a result, the participants with
mean framewise displacement (FD) (Jenkinson) > 0.2mm
or head displacement > 1.5mm, maximum rotation > 1.5°
were excluded from the analysis. According to this exclu-
sion criterion, two subjects each from the HC and CTN
group were excluded. No significant intergroup differences
were found in FD (t = 1.09, p = 0.28). The individuals’ fMRI
data were co-registered to their structural images, followed
by segmentation of the gray matter (GM), white matter
(WM), and cerebrospinal fluid (CSF), and normalization to
the Montreal Neurological Institute (MNI) space. The nor-
malized images were spatially smoothed with a 6-mm full-
width at half-maximum Gaussian kernel.

Group independent component analysis (GICA) analysis
and identification of independent components
After preprocessing, fMRI images with 170 volumes under-
went GICA to be decomposed into different RSNs by using
the Group ICA of fMRI Toolbox software (version 4.0b;
mialab.mrn.org/software/gift/ )[30]. Two data reduction
steps were performed in the principal component analysis
[14]. First, we reduced the individuals’ data into 120 princi-
pal components, which preserved > 99% of the variance.
Next, we concatenated the reduced data of all participants

Table 1 Demographic and clinical characteristics of participants

Patients with CTN Healthy controls χ2/t value P-value

Sex (female/male) 23/18 24/19 0.001 0.979

Age, y 56.34 ± 10.50 53.40 ± 9.73 −1.344 0.186

Education, y 11.66 ± 2.33 12.07 ± 2.24 0.825 0.412

Duration of disease, y 5.79 ± 4.68 NA NA NA

Attack frequency (times per day) 7.41 ± 3.91 NA NA NA

Score of VAS 6.41 ± 0.91 NA NA NA

Attack side Right (24); Left (17) NA NA NA

Medication Carbamazepine (33)/
Mecobalamin (5)/
None (3)

NA NA NA

Values were displayed as mean ± SD (range). p value of sex was calculated by chi-square test and p values of age, education were obtained by independent-
samples t-test. CTN, classic trigeminal neuralgia; HC, healthy controls; VAS, visual analogue scale
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across time and further reduced the data to 100 principal
components using an expectation maximization algorithm
[31]. The reliability and stability of the infomax ICA algo-
rithm [32] was ensured by iterating 20 times in the ICAS
SO implemented in GIFT [33] and using the most central
run to reconstruct subject-specific time courses and spatial
maps of each IC using the GICA back reconstruction algo-
rithm [34]. The group ICs of the 20 runs were clustered to
estimate their reliability, values > 0.8 were selected [35]. By
using one sample t-test across all subjects and for each IC,
the t-map of ICs was obtained with a threshold of t >mean
(μ) + 4SD (σ )[36]. Details about labels and spatial maps of
each IC are presented in Fig. S2, and the peak coordinates
of ICs are shown in Table S1.
We identified 59 ICs from 100 ICs based on the following

evaluation criteria: (1) IC should exhibit peak activations in
grey matter; (2) low spatial overlap with known vascular, ven-
tricular, motion, and susceptibility artifacts; and (3) IC should
have time courses dominated by low-frequency fluctuations
(ratio of powers below 0.1Hz to 0.15–0.25Hz in the
spectrum )[37]. All 59 ICs were then sorted into nine different
RSNs according to the spatial correlation values between their
spatial maps and atlas used in previous studies [14, 23, 38–
40] (Fig. 1A). Afterwards, additional postprocessing was ap-
plied to the time courses of 59 ICs as described in Allen
et al.’s study [14], including detrending, despiking using
AFNI’s 3dDespike algorithm, filtering using a fifth-order

Butterworth filter with a 0.15-Hz high frequency cut-off, and
finally regressing out the movement parameters.

dFNC estimation
We computed dFNC between the time courses (170 time
points) of ICs using a sliding window approach, which was
performed using the DFNC network toolbox in GIFT. A
window size with 20-TR (40 s) was chosen, because previous
studies suggested that FC fluctuations at resting-state would
be captured with windows of 30 ~ 60s [41]. We used a ta-
pered window in steps of 1 TR, which was obtained by con-
volving a rectangle with a Gaussian (σ= 3) function to
localize the dataset at each time point. Finally, a total of 150
windows were obtained and 59 × 59 pairwise FC matrices by
regularized precision matrix (inverse covariance matrix) [42]
were computed in every window. The L1 norm penalty was
imposed in the Graphical LASSO framework with 100 repe-
titions to promote sparsity in estimations [43]. With Fisher’s
z-transformation, the correlation values of pairwise func-
tional matrices were converted to z-values to improve nor-
mality and comparability and then residualized with
nuisance variables, including age and sex [36].

State clustering analysis
To assess the dFNC patterns that reoccur over time, k-
means clustering was performed on all FC matrices for
all participants. The k-means clustering algorithm was

Fig. 1 The spatial maps of 59 independent components and corresponding static functional network connectivity matrix. (A) 59 ICs were identified
and grouped into 9 functional network. (B) sFC between the whole time courses of selected ICs were calculated and averaged over subjects. Color bar
represents correlation values, i.e., Fisher’s z-transformed Pearson correlation coefficient. SMN, sensorimotor network; VIS, visual network; AUD, auditory
network; DMN, default mode network; SN, salience network; CC, cognitive control network; DAN, dorsal attention network; SC, subcortical network;
CBN, cerebellar network; sFC, static functional connectivity
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iterated 100 times with L1 distance (Manhattan distance)
function to estimate the similarity between matrices
[44]. Later, the analysis for cluster number validity was
made and the optimal number of k was determined as 2,
based on the silhouette criterion [45], which was com-
puted as a ratio of the similarity between windows in the
same cluster compared to similarity with windows in a
different cluster (refer to supplementary methods for de-
tails of k-means clustering processes). In the next 100
clustering iterations, k = 2 was maintained. Eventually,
we obtained two recurring FC states, of which cluster
centroids were determined as the median of all matrices
allocated to that state over time. The subject-specific
centroids of each state were calculated similarly as the
median value. Further, the subject-specific centroids be-
long to each group were averaged to obtain the group-
specific centroids for better visualization of group com-
parison patterns [39].
To describe the characteristics of the two cluster

states, we mainly focused on the degree of global modu-
larity. Modularity is a valuable measurement from graph
theory to interpret the dFNC states, because it evaluates
both functional integration and segregation of networks
[46]. Thus, we calculated the modularity index Q for
each state by using a normal Louvain community detec-
tion algorithm in the Brain Connectivity Toolbox (www.
brain-connectivity-toolbox.net/). A larger Q represents a
higher tendency of assigning ICs into different modules
[47]. Furthermore, the consensus clustering approach
was used to solve the stochastic problem of the Louvain
algorithm (refer to supplementary methods for details of
modularity analysis) [48, 49].
We calculated four temporal properties: fractional

windows, mean dwell time, number of transitions and
transition likelihood. The fractional window is calcu-
lated as the proportion of time spent in each state as
measured by percentage. The mean dwell time repre-
sents the average duration of time intervals an indi-
vidual spent in each state, which was calculated by
averaging the number of consecutive windows belong-
ing to one state before switching to another. The
number of transitions represents the switching times
between states, which estimates the brain flexibility.
The transition likelihood, represents the percentage of
switching probability between states. For between-
group comparison of different properties, nonpara-
metric permutation tests (10,000 repetition) were used
to assess differences in all those temporal properties
mentioned above, treating age and sex as covariates.
False discovery rate (FDR) correction was applied for
fractional windows and mean dwell time.
For the purpose of evaluating the consistency and

validity of the k-means clustering at different window
sizes, we repeated the dFNC states analysis with 16-

TR (32 s) and 24-TR (48 s). Pearson’s correlation coef-
ficients between the cluster centroids under different
window sizes was used to represent similarity and
help to find the states consistent with the primary
analysis [47].

Dynamic topological analysis
We applied a graph theory approach to obtain topo-
logical metrics across all sliding windows of all subjects
using GRETNA software (www.nitrc.org/projects/
gretna), to observe the variability of topological
organization of the functional connectivity network.
Based on the framework of graph theory, we defined the
59 ICs as functionally independent nodes with FC be-
tween pairs of ICs as edges. At first, FC matrices of all
windows were binarized with a series of sparsity thresh-
olds, where edges larger than the threshold were desig-
nated as 1 and those smaller than the threshold were
designated as 0. Only positive FC values were consid-
ered. Sparsity was defined as the ratio of the number of
existing edges divided by the maximum possible number
of edges in a network. Referring to previous studies [23,
28], we determined thresholds that ranged from 0.10 to
0.35 (with an interval of 0.01) for further analyses.
Next, we calculated both global and regional network

properties in a series of adjacent matrices for all partici-
pants. The former included: (1) measures of global (Eg)
and local network efficiency (Eloc); and (2) small-world
global metrics of clustering coefficient (C), characteristic
path length (L), small-worldness (σ), normalized clustering
coefficient (γ), and normalized characteristic path length
(λ); and the later was nodal efficiency. Given that it was
widely used in previous studies, an area under the curve
(AUC) approach was chosen to avoid the specific selection
of a threshold [23]. The detailed interpretation of topo-
logical properties is listed in Table S2. To better
characterize the temporal variation of those measure-
ments, we also computed the coefficient of variation (CV)
of AUC of network parameters as performed by Luo et al.
[28], where CV was calculated as the mean divided by the
standard deviation (SD) across all sliding windows.
The nonparametric permutation approach (10,000 it-

erations) was used again to test for dynamic topological
property differences in the AUC of each metric with age
and sex as covariates. As dynamic topological properties
were obtained using the whole time-courses, not relying
on any specific state, FDR correction was only used
when comparing CV of nodal efficiency. The number of
multiple comparison was 59—number of nodes, which
was equal to the quantity of ICs used.

Correlational analyses
Because the dynamic measures obtained in our study
were non-normally distributed, we performed
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Spearman’s partial correlation analyses to investigate
the possible relationships between abnormal proper-
ties and clinical data (including illness duration, VAS
and attack frequency). Demographics (age, sex, educa-
tion) and head motion (FD Jenkinson) were regressed
out and p < 0.05 was set as the statistical significance
threshold.

Results
Demographic and clinical characteristics
A total of 84 participants (41 CTN patients and 43 HCs)
met the inclusion criteria and were included for analysis.
Table 1 summarizes the detailed demographic and clin-
ical data of the participants. There was no significant in-
tergroup difference with respect to sex (p = 0.979), age
(p = 0.186) and education (p = 0.412).

Intrinsic connectivity networks
Based on the GICA framework, 59 independent
components (ICs) were defined and selected, and
their spatial maps of them are shown in Fig. 1. Spe-
cifically, all ICs were assigned into the following
nine networks: sensorimotor network (SMN), visual
network (VIS), auditory network (AUD), DMN, sali-
ence network (SN), cognitive control network (CC),
dorsal attention network (DAN), subcortical network
(SC), and cerebellum network (CBN). Figure 1B
shows the static functional network connectivity
(sFNC) matrix, computed with the entire BOLD
time course and averaged over subjects. The de-
tailed component labels and spatial information of
ICs are presented in Supplementary Table S1 and
Supplementary Fig. S2.

Fig. 2 Clustering analysis results. (A) Cluster centroids for each state: state 1, less frequent but with stronger inter-connection; state 2, more
frequent with relatively sparse connection. (B and C) The 3% strongest functional connections in each state are displayed, (absolute value of
correlation coefficients was used), where B has edges bundled together for better characterizing connection patterns and C further shows
connectivity type. The transition of colors in B means connections between networks. Red lines of C represent positive functional connectivity,
while blue lines represent negative connections. SMN, sensorimotor network; VIS, visual network; AUD, auditory network; DMN, default mode
network; SN, salience network; CC, cognitive control network; DAN, dorsal attention network; SC, subcortical network; CBN, cerebellar network
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Clustering analysis and functional connectivity strength in
dynamic states
Through the evaluation of dynamic interactions between
functional networks by sliding window and k-means
clustering method, two recurred functional states of the
whole cohort were identified as follows (Fig. 2A): a less
frequent but strongly connected state 1 (26%) and a
more frequent and sparsely connected state 2 (74%). For
a more accurate description of connectivity patterns in
each state, the 3% strongest functional connections are
shown in Fig. 2B and C (with absolute strength of correl-
ation coefficients as the index). State 1 was characterized
by positive connections within and between SMN-VIS-
DAN and widely negative connections between SC and
other networks (though the absolute FC strength did not
reach the top 3% except for IC088). State 2 was distin-
guished by partly strongly connected components within
the DMN and complex coupling between DMN-CC (in-
cluding both positive and negative correlations between
ICs). Additionally, SN participated much more in state 2
than in state 1 and was highly connected with DMN.
The modularity analysis (Fig. 3) revealed quite distinct

integration and segregation modes of the two states.
With a lower Q (0.1876), state 1 presented two func-
tional modules, one of which largely involved SMN, VIS,
and DAN, while the other consisted of the other

networks. By contrast, state 2 achieved a higher Q
(0.3042), with ICs primarily aggregated into three mod-
ules. Among them, module 2 mainly included DMN and
some part of CC and SN, that was predominant in the
state 2 FC pattern described above.

Group differences in temporal properties
The group-specific centroids of k-means clusters are
shown in Fig. 4A and B. Although CTN and HC had
similar dFNC profiles and connection patterns, we still
found some significant group differences in the key tem-
poral properties as shown in Fig. 5. In HC, the total oc-
currence of state 1 and state 2 was 33.5 ± 31.2% and
66.5 ± 31.2%, respectively. However, for CTN patients, a
lower occurrence frequency was observed in state 1
(17.4 ± 25.5%), and a higher occurrence rate in state 2
(82.6 ± 25.5%), which differed significantly from HCs
(p = 0.008, nonparametric permutation tests, FDR cor-
rection) (Fig. 5A). Accordingly, theses findings indirectly
reflect that CTN patients had a decline in occurrence in
state 1 by 16.1%, but a proportional rise was observed in
state 2 (16.1%). Likewise, notable group discrepancy was
identified for mean dwell time (p = 0.019, nonparametric
permutation tests, FDR correction) (Fig. 5B). When
compared to HC (mean ± SD for state 1: 24.6 ± 24.4; for
state 2: 65.0 ± 51.1), CTN patients were inclined to

Fig. 3 Modular analysis results. State 1 showed two modules (module 1 in red; module 2 in blue), whereas state 2 showed three modules (module 1
in green; module 2 in red, module 3 in blue). Edges between nodes represents 3% strongest functional connections in each state. In state 2, four
nodes of module 2 are labeled with their components numbers because of their widespread connections, including IC21, IC31, IC55, IC83, all of which
located in the DMN. IC, independent component. DMN, default mode network
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spend a shorter time in state 1 (14.1 ± 19.3), but lingered
for longer in state 2 (92.8 ± 53.1), suggesting an abnor-
mal time distribution of patients for each state. More-
over, the transitions between the two states of CTN
(2.7 ± 2.1) was significantly reduced when compared to
HCs (1.8 ± 2.0) (p = 0.04, nonparametric permutation
tests) (Fig. 5C).
When evaluating the transition likelihoods between

two distinct states, substantial group differences regard-
ing the probability of staying in a state and switching to
another were found. Figure 5D shows that CTN patients
preferred to stay in the sparsely connected state 2
(98.5 ± 2.8%, p = 0.026, nonparametric permutation
tests), and were less likely to switch to the strongly con-
nected state 1 (1.5 ± 2.8%, p = 0.026, nonparametric per-
mutation tests), which is entirely opposite in HC
(mean ± SD for staying in state 2: 96.9 ± 4.5%; for transi-
tion to state 1: 3.1 ± 4.5%). However, there was no group
difference with respect to the preference of staying in
state 1 (mean ± SD for CTN: 3.3 ± 4.1%; for HC: 96.7 ±
4.1%, p = 0.374, nonparametric permutation tests) or
transferring to state 2 (mean ± SD for CTN: 3.0 ± 3.6%;
for HC: 97.0 ± 3.6%, p = 0.378, nonparametric permuta-
tion tests). The results are consistent with and further
support the findings about fractional window and dwell

time. In summary, these results indicated an affection to
the stability of strong connections in state 1 in CTN pa-
tients, with a proportionate increase in expression of
sparse connections in state 2. Correlation analysis did
not find any relationships between temporal metrics and
clinical characteristics.
In validation analysis, when the window size was set to

16-TR and 24-TR with the rest of parameters un-
changed, two cluster states were obtained of each run.
State 1 and state 2 under both window sizes (16-TR and
24-TR) showed a similar FC pattern to the ones under
20-TR window size (refer to supplementary Table S4
and S5 for detailed r and p). We also observed consistent
between-groups differences in temporal metrics under
both window sizes (Fig. S3 and S4).

Dynamic topological properties
Significant differences between CTN and HC were iden-
tified when comparing CV for AUC of network effi-
ciency (p = 0.007 for Eg and p = 0.06 for Eloc,
nonparametric permutation tests) (Fig. 6A and B) and
small-world metrics (p = 0.029 for σ; p = 0.035 for γ; p =
0.017 for L, nonparametric permutation tests). Still, we
did not find abnormal alterations of patients in dynamics
of AUC of λ and C (p = 0.074 and p = 0.138 respectively,

Fig. 4 The two dFNC patterns of the two groups. (A) The state specific centroid matrices for HC. (B) The state specific centroid matrices for CTN. CTN,
classic trigeminal neuralgia; HC, healthy controls; SMN, sensorimotor network; VIS, visual network; AUD, auditory network; DMN, default mode network;
SN, salience network; CC, cognitive control network; DAN, dorsal attention network; SC, subcortical network; CBN, cerebellar network
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nonparametric permutation tests) (Fig. 6C–G). With re-
gard to the temporal variability of nodal efficiency
(AUC), CTN patients showed decreased values in IC 1,
IC 42 and IC 77 (p = 0.001 for IC 1 and IC 77; p = 0.002
for IC 42, FDR corrected). IC 1 (peak MNI coordinate:
3, 42, 0) is mainly located in the anterior cingulate cor-
tex (ACC) (Fig. 7A); IC 42 (peak MNI coordinate: − 3,
12, − 3) is mainly located in the bilateral caudates nu-
cleus and IC 77 (peak MNI coordinate: − 6, − 30, 6) is
mainly located in bilateral thalamus, both of which be-
long to the SC network.
In the further analysis of correlations between dynamic

topological properties and clinical data in the CTN group,
we found that the CV of AUC of σ, γ, and L were

negatively correlated with disease duration (Spearman’s
rho = − 0.421, − 0.433, and − 0.388 respectively; and uncor-
rected p = 0.009, 0.018, and 0.007, respectively) (Fig. 8A–
C). Additionally, the CV of gamma (AUC) was negatively
correlated with the pain attack frequency (Spearman’s
rho = − 0.338, uncorrected p = 0.041) (Fig. 8D).

Discussion
Investigation about temporal features of FC has been
proven valuable to reflect neural mechanisms of pain de-
velopment [50]. To our best knowledge, this is the first
dFNC study combined with graph theory to investigate
the temporal properties of states and variability of the
whole brain topological organization in CTN patients.

Fig. 5 Analysis results of temporal properties. (A) Fractional windows, representing the percentage of all the windows in each state, (B) mean
dwell time (i.e. the time duration a subject spent in each state) and (C) number of transitions (used to measure switching times between states)
are displayed for CTN and HC. Square dots in B and bars in C reveal the mean values with shadow and error bar representing standard error. (D)
Differences between groups in transition likelihood are shown. Asterisks (*) represent significance of p < 0.05 and asterisk (**) indicate p < 0.01
(FDR correction was used for fractional windows and mean dwell time, respectively). Taken together, CTN patients showed extreme preference
for state 2, accompanied by decreased transition numbers and probabilities. CTN, classic trigeminal neuralgia; HC, healthy controls
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Based on the two reoccurring dFNC states with distinct
connectivity configuration: an infrequent state 1 with
strong connections and a frequent state 2 with sparse
connections, there were three major findings associated
with CTN: (I) Patients showed more fractional windows
and longer dwell time in state 2 than state 1, which is
predominantly characterized by tight connections be-
tween DMN and CC and locally positive connections
within DMN; (II) CTN patients demonstrated decreased
transition numbers, paralleled by disruptions of variabil-
ity in both global (including network efficiency and
small-worldness) and local (nodal efficiency) topological
properties, which suggested an impaired flexibility of in-
formation transfer in patients. More importantly, the
damages in dynamics of nodal efficiency highlighted the
crucial role of the ACC, thalamus and caudate nucleus
in the pathophysiology of CTN; (III) The negative cor-
relation between global dynamic properties and disease
duration as well as attack frequency further suggested a
clinical relevance.

dFNC states
Increased reoccurrence fraction in state 2
In the present study, we found that CTN patients spent
more time in state 2, characterized by extensively sparse
connections but with strong FC within DMN and be-
tween DMN and CC. In previous studies, such weak and
diffuse dFNC state, like state 2 we observed, was always
considered steadier and as the average of a vast number
of additional states that varying less [14, 51], which may
also explain the similarity between state 2 and sFNC pat-
tern. Some studies further linked the state with self-
referential processing and drowsiness [52, 53]. One pre-
vious study about DMN activity in temporomandibular
disorder (TMD) suggested that pain rumination in pa-
tients were positively correlated to FC within DMN [54].
Also, by using arterial spin labeling, TN patients and
TMD patients both displayed increased cerebral blood
flow in dorsal precuneus [55]. Hence, the prolonged
dwell time of patients in such static state may reflect
pain rumination, or persistent negative thinking about

Fig. 6 CV comparing of global topological properties (AUC). Violin plots (A ~ G) represent CV of AUC of global efficiency, local efficiency, clustering
coefficient, characteristic path length, sigma, gamma, and lambda, respectively for CTN (red) and HC (blue). All asterisks indicate a significant group
differences (*, p < 0.05; **, p < 0.01). Horizontal lines in boxes indicate group medians. CV, coefficient of variation; CTN, classic trigeminal neuralgia; HC,
healthy controls
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pain. Correspondingly, in state 2 we found some connec-
tions between DMN and DAN. With similar dFNC ana-
lysis, Tu et al. found that patients with migraine had
reduced expression of DMN, which was proposed to
stem from weaker alpha band oscillation and eventually
lead to reduced mind-wandering experience [23]. Con-
versely, our findings are consistent with an electroen-
cephalography study about chronic orofacial neuropathic
pain, which demonstrated significantly greater activity
over the theta and alpha ranges in patients [56] that re-
versely supported the increased DMN activation.
Altogether, give the CTN is characterized by long-term
paroxysmal nociceptive input, patients may assign more
attention to pain [57], further manifest as enhanced
communication within the DMN.
Tight and complicated FC between DMN and CC also

characterized state 2, including extensive positive con-
nections and several negative connections. As a “task-
positive” network, CC engages in external stimuli and
tasks, and would be activated significantly in attention
and executive control to modulate the descending pain
system under pain-related stimuli. Thus, CC generally
exhibits negative FC with DMN [58, 59]. One recent rs-
fMRI study on chronic migraine revealed disrupted
negative FC between the DMN and CC of patients [58].
Another study investigated the migraine brain using dy-
namic amplitude of low-frequency fluctuations (dALFF)
and found decreased dynamics in both DMN and CC

[60]. In the present study, the higher occurrence of a
state with obvious FC between DMN and CC may indi-
cate the state is a neural substrate for the dysregulation
of static FC between networks in CTN. The disturbance
of DMN-CC decoupling possibly reflects an imbalance
of switching between internally and externally directed
cognition and further influence cognitive and emotional
processing of pain [61].
Additionally, the ICs in state 2 were subdivided into

three modules with higher modularity index, interpreted
as stronger segregation between neural network groups
[62]. As indicated in previous studies, dysfunction in in-
tegration characterizes pain such as migraine, CTN, and
other neuropathic pain [63, 64], and may facilitate the
processing of pain-related information [65]. Further-
more, the disconnections between modules probably re-
flect interruptions on inter-system communication [65]
and impairments in cognitive performance that are
known to be a complication of pain [16, 66]. Therefore,
the increased fractional and mean dwell time, and high-
est modularity in state 2 in patients indicates increased
periods of excessive functional segregation in CTN and
potentially a potentially reduced ability to flexibly switch
to state 1.

Decreased reoccurrence fraction in state 1
In our study, state 1 was characterized by widely positive
connections, especially within and between SMN-VIS-

Fig. 7 CV comparing of nodal efficiency (AUC). The CV for AUC of nodal efficiency of (A) IC1 (located in ACC), (B) IC42 (located in caudate) and (C)
IC77 (located in thalamus) are displayed using violin plots for CTN (red) and HC (blue). All asterisks indicate a significant group difference (**, p < 0.01,
FDR corrected). Horizontal lines in boxes indicate group medians. CV, coefficient of variation; CTN, classic trigeminal neuralgia; HC, healthy controls; IC,
independent component; ACC, anterior cingulate cortex
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DAN, all of which are parts of the sensory system and
participate in the information processing of external
stimuli [61]. With regard to the SMN, an increasing
number of studies have demonstrated the central role of
the somatosensory cortex in processing and modulating
pain [12].
The somatic motor cortex has been linked to pain

processing by providing feedback from various layers
to the distinct thalamic nucleus anatomically [67]. It
has been reported that CTN patients commonly show
mild hypoesthesia [2, 68]. Previous morphological re-
search about CTN showed decreased gray matter vol-
ume (GMV) in the SMN, including secondary

somatosensory cortex, primary motor cortex, and pre-
motor area [9]. Thus, our findings provided further
functional evidence to support the injury to SMN. In
addition, pain experience is accompanied by several
sensory inputs, such as visual, auditory, and olfactory,
which may interfere with each other. Altered FC
within VIS and AUD networks has been revealed in
previous functional research about chronic migraine
[61]. Taken together, the observed decreased expres-
sion of sensory network-related FC may suggest the
failed modulation between and within sensory-related
networks, probably leading to attenuated perception
in CTN patients.

Fig. 8 Correlation between clinical characteristics and CV of topological properties (AUC) for CTN group. (A ~ C) The disease duration was negatively
correlated with CV of AUC of Sigma, Gamma, and characteristic path length. (D) The CV of Gamma showed negative correlation with attack frequency.
L, characteristic path length; CV, coefficient of variation; CTN, classic trigeminal neuralgia
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We also observed some obvious negative connections
between SC and cortical networks in state 1. We specu-
late that the shorter duration of patients in the strongly
connected state may partly reflect the dysfunction of
cortical-subcortical interaction, which was confirmed by
the following analysis (see “Variability of nodal efficiency
analysis” for details). Other dFNC studies of multiple
diseases including low back pain [24], migraine [23],
schizophrenia [69], and bipolar disorder [70] also
showed similar state with aberrant FC between SC and
disease-related cortical areas, wherein all diseases share
a common thalamocortical dysrhythmia model. Thus,
the present findings may provide supportive evidence of
dFNC analysis to declare the neural mechanism by sep-
arating temporally contiguous states alone.

Temporal variability of topological metrics
Consistent with the decreased number of transitions,
CTN patients displayed robustly reduced temporal vari-
ability of global topological properties. As the integration
and segregation of large-scale brain network serially fluc-
tuates time [14], dynamic topological analysis can pro-
vide additional information. In our study, CV represents
the discreteness of network windows and further reflects
the flexibility of rapid shift between mental states, which
may be beneficial for maintaining the responsive ability
of the brain [71], as well as help optimize behavior dur-
ing pain for a better task performance [72]. Furthermore,
reduced dynamics in Eg, Eloc, σ, γ and L of CTN patients
probably suggested an impairment on flexibility of the
global functional networks. Similarly, Wu et al found al-
tered temporal stability of global parameters of primary
dysmenorrhea [25], which suggested dynamically
reorganization of brain network. Moreover, the CV of
topological properties in our study was found to be cor-
related with disease duration and attack frequency. As
reported in previous studies, the efficiency of neural sys-
tems is partly reflected by the temporal variability of
neural activity [73]. It has been proven that altered tem-
poral variability was not only related to lower thermal
pain threshold but also could be used as predictor of
pain characteristics [73, 74]. Thus, our findings may
imply less efficient information transfer throughout the
whole brain in patients. The variability of topological
properties may be supposed as potential indices in CTN
management.
Regarding to the nodal efficiency, regions with de-

creased temporal variability were observed mainly lo-
cated in the ACC of SN as well as the thalamus and
caudate nucleus of SC. As the key nodes of SN, ACC
plays a critical role in marking salient events (such as
pain) for further processing and providing controls for
better cognitive and behavioral response [75]. Accord-
ingly, the function of SN seems to be entirely contrary

to DMN—activated when attention was focused on pain,
and suppressed otherwise [16]. Previous studies have
found increased FC between insular and ACC [9] in
CTN patients, along with decreased GMV [76, 77].
Moreover, ACC is involved in the rewarding effects of
pain relief and displays tight coupling with brainstem
pain-control circuit (such as periaqueductal gray [PAG]
and locus ceruleus [LC]) to provide regulation from the
high neural system [78]. Thus, in the present study, re-
duced the dynamics of ACC efficiency in CTN may in-
duce abnormal modulation and switching between SN
and other “dynamic pain connectome” regions, thereby
leading to dysfunction in coping with changing environ-
ments and needs.
The thalamus is a part of the ascending pain pathway [6],

and functions as a relay and integration center connecting
subcortical and cortical regions. Previous investigations using
electroencephalography and magnetoencephalography tech-
niques have shown that chronic neuropathic pain is associ-
ated with thalamocortical dysrhythmia [79, 80]. Likewise, rs-
fMRI study demonstrated increased infra-slow oscillation
activity of the thalamus [6]. In our dFNC study, we further
suggested reduced temporal variability in the functional effi-
ciency of the thalamus, especially located in the ventroposter-
ior medial region. In general, the ventroposterior medial
thalamus is under inhibition of γ-aminobutyric acid (GABA)
released from the thalamic reticular nucleus; this process was
supposed to play a key role in controlling thalamocortical
rhythm [81, 82]. Moreover, aberrant thalamic firing, espe-
cially increased burst firing in the somatosensory thalamus
without overall hyperactivity, has been proven to be associ-
ated with neuropathic pain [69]. With respect to our results
in temporal fluctuation, it has been indicated that signal vari-
ability was associated with the balance of synaptic excitation
and inhibition, where the greater variability may represent
better neuronal plasticity, for further adaptation to the chan-
ging environment [83, 84]. Therefore, attenuated flexibility of
thalamic efficiency in CTN may be linked to excessive thal-
amic firing, either as a predisposing factor or consequence,
subsequently perhaps to contribute to the vulnerability of
thalamocortical connectivity and cause constant perception
of pain.
The caudate nucleus is another key nucleus of the SC

network and receive nociceptive information from the
trigeminal nuclei through direct projections from lamina
I neurons of the trigeminal spinal nucleus, and inde-
pendently of the thalamus [85]. The caudate nucleus
plays a critical role in the evaluation of the agreement
between the action and the outcome, as well as planning
and performing tasks necessary to achieve complex goals
[86]. Several morphological studies have suggested re-
duced GMV of the caudate nucleus in chronic pain dis-
orders such as TN [77], cluster headache [87], and knee
osteoarthritis [86]. Consistent with those studies, our
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findings provided additional functional evidence from
the perspective of dynamic topology. Thus, the lower ef-
ficiency of the caudate nucleus may be partly explained
by an adaptation to chronic stimulation or an inhibition
of facial movement to avoid eliciting pain [3, 9].

Limitation
Our study has some limitations. Firstly, the patients en-
rolled were all taking medications, most commonly carba-
mazepine. Thus, drug effects should be considered and
controlled in the future study to diminish the influences
[88]. Moreover, given the attack side was not uniform in
our patients, though no statistically significant difference
was found in subgroup analysis (see supplementary mater-
ial), it is needed to validate with large samples. Addition-
ally, multiband acquisition allows scanning with a shorter
TR and elevated temporal resolution [89]. In future inves-
tigations, it would be expected to increase the estimation
power by using fast fMRI. Finally, multimodal approaches
including GM and WM morphological analysis as well as
GABA related metabolic research need to be used on
more brain regions, such as the PAG and the rostroventral
medulla from the antinociceptive system. By applying ma-
chine learning and related methods, it is expected to iden-
tify more fine-grained changes in “dynamic pain
connectome” and valuable indices.

Conclusion
To our knowledge, this is the first study to assess dy-
namic connectivity properties of CTN. Abnormal tem-
poral patterns, characterized by complex connections
between DMN-CC and hyper-connectivity within DMN,
were found mainly in patients. Additionally, we observed
disrupted flexibility in state transition and global topo-
logical organization that furthermore identified key brain
regions (ACC in the SN and the thalamus and caudate
nucleus in the SC) with decreased temporal variability of
efficiency. Reduced dynamics of topological properties
were further correlated with both disease duration and
pain frequency. These results collectively suggested a
temporal disturbance of whole brain networks due to
chronic pain and further highlighted the crucial role of
“dynamic pain connectome” regions (including DMN/
CC/SN) in the pathophysiology of CTN, also provided
supplementary evidence for current knowledge about
the dysfunction of cortical-subcortical interaction in pain
development.
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