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Abstract

Background: Novel neuroimaging strategies have the potential to offer new insights into the mechanistic basis for
trigeminal neuralgia (TN). The present study aims to conduct whole-brain morphometry analyses of TN patients and
to assess the value of group-level neocortical and subcortical structural patterns as tools for diagnostic biomarker
exploration.

Methods: Cortical thickness, surface area, and myelin levels in the neocortex were measured via magnetic
resonance imaging (MRI). The radial distance and the Jacobian determinant of the subcortex in 43 TN patients and
43 matched controls were compared. Pattern learning algorithms were employed to establish the utility of group-
level MRI findings as tools for predicting TN. An additional 40 control patients with hemifacial spasms were then
evaluated to assess algorithm sensitivity and specificity.

Results: TN patients exhibited reductions in cortical indices in the anterior cingulate cortex (ACC), the midcingulate
cortex (MCC), and the posterior cingulate cortex (PCC) relative to controls. They further presented with widespread
subcortical volume reduction that was most evident in the putamen, the thalamus, the accumbens, the pallidum,
and the hippocampus. Whole brain-level morphological alterations successfully enable automated TN diagnosis
with high specificity (TN: 95.35 %; disease controls: 46.51 %).

Conclusions: TN is associated with a distinctive whole-brain structural neuroimaging pattern, underscoring the
value of machine learning as an approach to differentiating between morphological phenotypes, ultimately
revealing the full spectrum of this disease and highlighting relevant diagnostic biomarkers.
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Introduction
Trigeminal neuralgia (TN) is defined by paroxysmal uni-
lateral facial pain in a well-defined territory, resulting in
symptoms of sporadic, sudden, shock-like or burning fa-
cial pain that most commonly occurs in the V2 region,
or less commonly in the V3 and V1 regions. TN is most
frequently a result of trigeminal nerve root entry zone

(REZ) compression by the local vasculature [1, 2]. Neu-
roimaging techniques, particularly magnetic resonance
imaging (MRI), are essential for the etiological subclassi-
fication of primary or secondary TN, as well as for the
detection of vascular contact and the prediction of the
degree of root compression [3]. While not associated
with elevated mortality rates, TN is linked to significant
anxiety and quality of life reductions in affected individ-
uals. Prolonged vascular compression can result in focal
demyelination, leading to inappropriate neuronal activa-
tion or ephaptic cross-talk as a consequence of the
pathological cross-activation of large and small afferent
fibers. These processes, in turn, can lead to secondary
changes which ultimately sensitize nociceptive neurons
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in the trigeminal nucleus and higher brain structures,
leading to the symptoms of TN [4, 5].
MRI-derived metrics can be analyzed to explore inter-

actions among brain structures and associated clinical
manifestations, potentially offering insight into the
pathological basis for a range of disease states. A number
of morphological abnormalities have been linked to
other chronic pain conditions including fibromyalgia,
phantom pain, and chronic head pain [6–8]. Chronic
TN previously has been linked to heterogeneous changes
in the structure of these brain regions. For example,
most studies have reported that TN patients exhibit a re-
duction in gray matter (GM) volume, although several
articles have also reported increases in GM volume in
other brain regions [5, 9, 10]. As idiopathic pain disor-
ders are generally thought to be centrally mediated, neu-
roimaging has the potential to offer insight into the
mechanistic basis for pain experienced by patients. Ab-
normalities in GM characteristics may be pain-driven,
dynamic, and progressive [11], although previous ana-
lyses focusing on a single unique feature (thickness)
were found to be inadequate as a means of capturing the
entirety of the TN-related brain network. Subcortical
structures can also play a critical role in modulating
pain, and further study of TN-related neocortico-
subcortical abnormalities is thus warranted. Multiple
neuroimaging features have been shown to be conducive
to understanding the more complex nature of the brain
network. Multivariate analysis permits the simultaneous
analysis of all input variables while accounting for their
interactions and thereby yielding greater statistical
power. Thus, the results of such analysis can be more
readily interpreted as a neural network signature [12].
The present study was designed to (1) compare struc-

tural abnormalities in TN patients and healthy controls
in order to detect specific TN-related neocortical and
subcortical structures that may be associated with TN,
and (2) construct a support vector machine (SVM)
model to evaluate the ability of TN patient-derived
quantitative imaging markers to differentiate between
TN patients, healthy controls, and a disease control co-
hort of hemifacial spasm (HFS) patients.

Methods
Patient selection
For the present study, patients diagnosed with TN as per
the Criteria of the International Headache Society
(ICHD 3) [13] and patients with classical HFS with a
positive lateral spread response were included. In both
disease cohorts, patients were refractory to pharmaco-
logical treatment and underwent microvascular decom-
pression via a retrosigmoid approach. All patients
exhibited a likely locus of neurovascular compression on
the ipsilateral root in preoperative MRI scans, as

confirmed by the intraoperative observation of distinct
vascular compression. Healthy controls were free of any
history of neurological conditions or chronic pain
disorders, and had all successfully undergone a normal
neurological examination. To exclude potential spectrum
bias, we assessed the specificity of our algorithm using
both healthy individuals and clinically well-characterized
disease controls [14].

MRI acquisition and image processing
A 3T Siemens Verio scanner was used for the neuroim-
aging of all patients using identical protocols. Three-
dimensional data were acquired with a T1-weighted
magnetization prepared rapid acquisition gradient echo
(T1WI MPRAGE) sequence (repetition time [TR] = 2,300
ms, echo time [TE] = 2.53 ms, flip angle = 12°, field of
view [FOV] = 256 × 256 mm, no gap, voxel size = 1.0 mm
× 1.0 mm × 1.0 mm) and a T2-weighted fluid-attenuated
inversion recovery (T2WI FLAIR) sequence (TR = 7,000
ms, TE = 80 ms, flip angle = 120°, FOV = 256 × 256 mm,
no gap, voxel size = 1.5 mm × 1.5 mm × 1.5 mm).
Cortical reconstruction was achieved with the FreeSur-

fer (Version 6.0; https://surfer.nmr.mgh.harvard.edu) [15].
The reconstruction consisted of: (i) white matter (WM)
segmentation; (ii) GM/WM boundary tessellation; (iii) in-
flation of the folded surface tessellation; (iv) automatic
correction of topological defects; and (v) pial surface
improvement using FLAIR data [16]. FreeSurfer parcella-
tion was used for shape extraction, after which topological
correction and mild smoothing were performed based
upon a topology-preserving level set algorithm, as detailed
previously [17, 18]. The ENIGMA-Epilepsy protocol was
used for quality control analyses of these cortical
reconstructions based upon the internal surface method
(www.enigma.ini.usc.edu). Visual verification of surface
extraction data was then performed, with manual
correction of topological defects being conducted where
necessary. Within-subject registration of FLAIR scans to
T1-weighted images was performed. Extracted neocortical
and subcortical surface-based features included:

(i) Cortical thickness was measured as the distance
between the corresponding vertices of the GM/WM
and pial This parameter is indicative of multiple
cellular-level features such as size, density, neuronal
arrangement, neuroglia, and nerve fibers [19].

(ii) Surface area was defined as the average surface area
determined by 6 triangular meshes surrounding
each vertex along the GM/WM interface, and is
thought to reflect relative cortical column
expansion or compression in a particular area [19].

(iii)Myelin levels were defined by the ratio of T1-
weighted to T2-weighted signal intensity. This
feature corresponded to the GM myelin content
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and the analysis was more reliable with in bias field
removal, mapping of cortical GM voxels to the
surface, and surface-constrained smoothing to
reduce noise [20].

(iv)Radial distance corresponding to the distance of the
vertex from the medial curve of the structure,
enabling a shape thickness measure [21, 22].

(v) Jacobian determinant corresponding to the ratio of
the area of an individual shape relative to the
template area at the corresponding This parameter
corresponds to localized tissue reduction or surface
area enlargement relative to the corresponding
template shape [21, 22].

All feature maps were registered to an average space
(fsaverage_sym) with an identical number of vertices for
each hemisphere. The right affected hemisphere vertex
values of each feature were flipped to the left hemi-
sphere following the xhemi (https://surfer.nmr.mgh.
harvard.edu/fswiki/Xhemi) procedure [23], which is able
to move all the feature maps to the left hemisphere to
permit further intergroup comparisons.

Feature selection and machine learning model
development
The neocortex was parcellated at 180 regions per hemi-
sphere using the HCP MMP 1.0 atlas [24], which delin-
eates the cortical architecture, function, and connectivity.
The subcortical structures were divided into 7 regions per
hemisphere via a shape analysis approach, which primarily
consisted of 4 steps: volume parcellation, surface extrac-
tion, registration, and local shape volume computation
[25]. Initially, 568 candidate features were generated for
classification. To avoid multicollinearity, a principal com-
ponent analysis (PCA) was implemented to preserve 10
features for classifier training.
A SVM algorithm was employed for classification in

the present study. This algorithm represents a hyper-
plane in multidimensional space, thereby minimizing
error while allowing for maximal between-class separ-
ation. A linear kernel was chosen to contrast with the
characteristic non-linear approach. The soft margin par-
ameter that controls the trade-off between having zero
training errors and allowing misclassifications was tuned
using a possible range of values. A leave-one-out ap-
proach was used to cross-validate the classifier, with a
given patient being classified according to the data from
all other patients. The performance of the final model
was assessed based upon the area under the curve
(AUC) values for receiver operator characteristic (ROC)
curves assessing individual and global features. Specifi-
city was assessed based upon the proportion of healthy
and disease control patients that were incorrectly identi-
fied as TN patients. Model robustness was assessed

through 5,000 permutation tests. In addition to the SVM
algorithm, we also investigated other ML approaches
including logistic regression and ridge classifiers using 2-
fold, 5-fold, 10-fold and leave-one-out (LOO) cross-
validation, respectively (Table S1).

Statistical analysis
Whole-brain morphological alterations, cortical thick-
ness, surface area, myelin levels in the neocortex, and
the radial distance and deformation of subcortical struc-
tures were statistically compared between TN patients
and controls using surface-based linear models imple-
mented in SurfStat (http://www.math.mcgill.ca/keith/
surfstat/) through surface-wise Student’s t-test analysis.
Models included age and sex as covariates. As the
selected surface features are markers of TN-related brain
alterations, Hotelling’s t-squared statistic was used to
repeat the above comparisons based upon their
multivariate combination in order to define the overall
abnormality load. A diffusion kernel (full width at half
maximum = 20 mm) that respects surface topology was
used to blur surface-based measurements prior to ana-
lysis [19]. Random field theory was used to correct all
statistical analyses, with family-wise error (FWE) being
controlled for at PFWE < 0.05.
Each parameter was assessed for the normality of

distributed data using the Lilliefors test. Subgroup
heterogeneity and dichotomous data were analyzed with
Chi-squared variance tests. Normally distributed data
were analyzed using Student’s t-tests, while Mann-
Whitney U tests were used to compare nonparametric
continuous variables. Correlation analyses were used to
measure the relationships between variables, with Pearson
correlation coefficient being employed for normally distrib-
uted data and Spearman’s rank correlation coefficient be-
ing conducted for non-parametric continuous variables. A
P value < 0.05 was considered to be statistically significant.

Results
Participants
In total, this study enrolled 43 TN patients, 40 HFS dis-
ease control patients, and 43 healthy controls. All groups
were age-matched (mean ± standard deviation [SD]:
TN = 59.05 ± 9.95; HFS = 51.50 ± 9.04; controls = 58.95 ±
9.40; except analysis between TN and HFS, P < 0.05),
sex-matched (female: 53.49 % TN, 60.00 % HFS, 55.81 %
controls), and matched with respect to affected side (left:
48.84 % TN, 60.00 % HFS). The mean disease duration at
time of MRI acquisition was 5.41 ± 4.71 years. Patients
with TN reported pure V1 pain in 2.32 % of cases, V1
and V2 pain in 2.32 % of cases, V1, V2, and V3 pain in
6.98 % of cases, pure V2 pain in 27.91 % of cases, V2 and
V3 pain in 23.26 % of cases, and pure V3 pain in 37.21 %
of cases (Table 1).
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The IRB of the Beijing Tiantan Hospital, Capital
Medical University approved this study, with all
participants having provided written informed consent
to participate.

Analysis of neocortical morphologic markers
Relative to healthy controls, TN patients exhibited cor-
tical thinning in the midcingulate cortex (MCC) and the
posterior cingulate cortex (PCC). TN patients also
exhibited reduced surface area in the anterior cingulate
cortex (ACC), MCC, and PCC, together with increased
myelin levels in the entorhinal cortex and parahippo-
campal cortex (Fig. 1A). A surface-based, vertex-wise,
FWE-corrected multivariate analysis indicated that TN
patients exhibited significant differences between TN
patients and controls in the ACC, MCC, and PCC. We
further conducted ROI-wise statistical analysis of each
morphologic feature in detail. Relative to controls, TN
patients exhibited significant decreases in ACC surface
area (Student’s t = -6.12, P < 0.001), cortical thickness
(Student’s t = -3.68, P < 0.001), and MCC surface area
(Mann-Whitney U = -4.95, P < 0.001), as well as de-
creased cortical thickness (Student’s t = -4.21, P < 0.001)
and surface area (Student’s t = -6.12, P < 0.001), whereas
myelin level in the PCC were increased (Mann-Whitney
U = 2.39, P = 0.02) (Fig. 1B). Detailed statistical data cor-
responding to these three significant brain regions
(ACC, MCC, and PCC) and surface-based features (cor-
tical thickness, surface area, and myelin levels) are
shown in Figure S1A. In areas corresponding to signifi-
cant clusters, a multivariate linear model was used to
directly evaluate the association between disease
duration and individual surface-based features, with no
differences being observed (Figure S1B). Furthermore,
there were no significant correlations between duration

and morphological features (cortical thickness: R = 0.13,
P = 0.42; surface area: R = -0.09, P = 0.56; myelin: R =
-0.10, P = 0.54; radial distance: R = -0.20, P = 0.20;
Jacobian determinant: R = -0.25, P = 0.11) (Figure S2).

Analysis of subcortical morphological markers
TN patients exhibited a reduction in radial distance
primarily in the head of the hippocampus, the lateral
putamen, and the lateral thalamus, with Jacobian
determinant reductions being evident in the ventro-
medial putamen relative to healthy controls (Fig. 2A).
In an FWE-corrected multivariate analysis, the patient
cohort exhibited widespread value reductions in the
nucleus accumbens, the bilateral hippocampal head,
the lateral putamen, and the ventral thalamus (Fig. 2B).
Left subregion mapping results are also presented, as the
affected side of all patients was flipped to the left (Fig. 2C).

Automated patient classification
The SVM model incorporating surfaced-based features
correctly classified 26 out of 43 patients with TN
(60.47 % sensitivity) and 41 of 43 healthy controls
(95.35 % specificity), and reached a mean AUC of
0.83. To further assess the specificity of this model,
the analysis was repeated for patients with HFS,
where the model was only able to correctly detect 17
of 40 disease controls, with a mean AUC of 0.49
(Fig. 3B). In this context, the model performed best
with a predictive AUC of 0.80 for the surface area
followed by the remaining individual features: cortical
thickness (AUC = 0.78), myelin (AUC = 0.74), Jacobian
determinant (AUC = 0.37), and radial distance (AUC =
0.36) (Fig. 3C). Permutation tests (5,000) iterations
confirmed that the accuracy of this model exceeded
levels attributable to chance (P < 0.002) (Fig. 3D).

Table 1 Patient demographic information

TN HFS CON Statistic

Numbers 43 40 43 /

Age, y 59.05 ± 9.95 51.50 ± 9.04 58.95 ± 9.40 TN vs. HFS: t = 3.61, P < 0.05*, MD = 2.09, 95 % CI = 3.38–11.71
TN vs. CON: t = 0.05, P = 0.97, MD = 0.09, 95 % CI = -4.06-4.24

Sex, female (%) 23 (53.49 %) 24 (60.00 %) 24 (55.81 %) TN vs. HFS: Chi = 0.36, P = 0.55, OR = 0.77, 95 % CI = 0.32–1.83
TN vs. CON: Chi = 0.05, P = 0.83, OR = 0.91, 95 % CI = 0.39–2.13

Side, left (%) 21 (48.84 %) 24 (60.00 %) / TN vs. HFS: Chi = 1.04, P = 0.31, OR = 0.64, 95 % CI = 0.27–1.52

Duration, y 5.41 ± 4.71 / / /

Distribution of the pain (n, %) V1 = 1 (2.32 %)
V12 = 1 (2.32 %)
V123 = 3 (6.98 %)
V2 = 12 (27.91 %)
V23 = 10 (23.26 %)
V3 = 16 (37.21 %)

/ / /

Continuous and categorical data were respectively analyzed via independent-samples t-test and Chi-squared variance test
Abbreviations: TN patients with trigeminal neuralgia, HFS disease controls with hemifacial spasm, CON healthy controls, MD mean difference, 95 % CI 95 %
confidence interval of the difference, OR odds ratio
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Narrative synthesis of whole-brain neuroimaging patterns
The majority of analyses evaluating TN-related neuroim-
aging patterns to date have focused on the neocortex, with
several also having examined subcortical structures (6/7),
while relatively few have assessed the brainstem (3/7)
(Fig. 4). Approaches to evaluating whole-brain changes
have included multi-region or voxel-based morphometry
alone or in combination (n = 5), as well as cortical thick-
ness analyses (n = 2). A moderate level of variation with
respect to the statistical methods and thresholds employed
has also been observed across studies. Progressive volume
reduction was detected for frontal regions in 7/7 studies
(100 %), parietal regions in 4/7 studies (57.1 %), temporal
regions in 3/7 studies (42.9 %), the insular cortex in 2/7
studies (28.6 %), and subcortical regions in 6/7 studies
(85.7 %), with the thalamus being reported in 6/6 studies
(100 %) and the putamen in 4/6 studies (66.7 %). Cortical
thickness and increased volume were also reported in 2/7
studies (28.6 %). Our TN cohort exhibited widespread ab-
normalities in multiple regions, although after correcting
for multiple comparisons, significant morphological alter-
ations were only detected in the ACC, MCC, PCC, and
subcortical structures.

Discussion
In the present study we examined whole-brain MRI
morphological characteristics, including neocortical

and subcortical alterations in patients with TN. In
addition, we developed a two-step SVM machine
learning approach that was employed to validate
these TN-related morphological patterns. Participants
cohorts did not differ with respect to demographics
or affected side. Surface-based analyses revealed
structural alterations in the ACC, MCC, PCC, and in
multiple subcortical structures, particularly the
lateral putamen and ventral thalamus. This brain
prediction model yielded a satisfactory predictive
AUC and specificity when sued to evaluate disease
controls, and performed consistently in permutation
tests, suggesting that these significant brain regions
were potentially involved in TN-related brain network
modulation.

Morphologic alterations in neocortical structures
Neuroimaging studies conducted over the past decade
have led researchers to characterize a so-called ‘pain
matrix’ within the human brain composed of the
thalamus, the basal ganglia, the supplementary motor
cortex (SMC), the insular cortex, the ACC, and the
prefrontal cortex (PFC) [26–28]. A better understand-
ing of the mechanisms that lead to pain becoming
chronic is necessary to guide the development of
appropriate treatments capable of remediating in-
appropriate cortical reorganization.

Fig. 1 Neocortical surfaced-based feature analysis. A Univariate analysis identified clusters that differed significantly relative to controls.
B Multivariate analysis of the joint distribution of thickness, surface area, and myelin. Comparisons between TN patients and controls with respect
to the different neocortical features for different significant clusters. The t values are denoted by colored bars, with random field theory having
been used to correct significant clusters for multiple comparisons at a PFWE < 0.05. Abbreviations: ACC: anterior cingulate cortex; MCC:
midcingulate cortex; PCC: posterior cingulate cortex; *: P < 0.05; ***: P < 0.001
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Past neuroimaging studies have largely focused on
structural changes associated with TN, such as GM re-
ductions. For example, Gustine et al. reported a reduc-
tion in the GM volume in the primary somatosensory
cortex, the anterior insula, the putamen, the nucleus ac-
cumbens, and the thalamus of patients with chronic oro-
facial pain, whereas GM volume in the posterior insula
was increased [9]. Several other studies have similarly
detected a reduction in GM volume in areas associated
with pain processing, whereas GM volume is often
found to be increased in other regions [28–30]. These

reports, together with our results, strongly suggest a po-
tential relationship between GM volume changes and al-
tered pain perception or processing in TN patients.
We observed significantly decreased ACC, MCC, and

PCC morphological indices in TN patients in this study.
Several preclinical and clinical studies conducted to date
have led investigators to define a “top-down” pain modu-
latory system in which pain perception can be increased
or reduced by the activation of brain regions associated
with modulating nociceptive input flow [31]. The ACC
may play a role in pain adaptation, habituation,

Fig. 2 Subcortical surfaced-based feature analysis. A Univariate group analyses indicating clusters that were significantly altered relative to
controls. B Multivariate analysis assessing the joint distribution of the radial distance and Jacobian deformation. Bar plots correspond to
comparisons between patients and controls with respect to different subcortical features for different significant clusters. The t values are
indicated by colored bars, with random field theory having been used to correct significant clusters for multiple comparisons at PFWE < 0.05.
C Subregional mapping results (left side only, as all samples were flipped such that the affected side was to the left)
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distraction, and the engagement of the endogenous pain
control system [32]. The MCC has been linked to oriented
attention, shifting attention, motor response, withdrawal
reflex, motor control, and warning [33]. The PCC is
thought to be associated with monitoring, consciousness,
perspective-taking, and mindfulness [33].

Morphologic alterations in subcortical structures
Subcortical structures are closely associated with pain
processing, modulatory circuits, and related processes

[34]. There is evidence that the putamen can mediate as-
pects of pain processing through sensorimotor/sensory-
discriminative and reward/reinforcement networks [35].
The thalamus receives inputs from multiple ascending
pain pathways, and is thus directly linked to the sensory
discriminative and affective motivational aspects of pain.
A study assessing neural oscillation revealed that local
dynamic networks of neural oscillations in the thalamus
participate in pain perception and modulation [36].
Owing to its subjective and complex nature, pain can

Fig. 3 Machine learning model design and performance. A SVM classifier overview. HCP-MMP1.0: Human Connectome Project Multi-Modal
Parcellation version 1.0 [24]; PCA: principal component analysis; CV: cross-validation. B Model performance as a tool for differentiating between
TN patients and healthy controls. HFS patients served as disease controls for analyses of model specificity. TN: trigeminal neuralgia; HFS:
hemifacial spasm disease controls; CON: healthy controls. C ROC and AUC values for models trained on individual neocortical and subcortical
features. D AUC values corresponding to 5,000 permutation tests conducted using the final model. The AUC frequency across 5,000 tests is
denoted with a blue histogram, while the real AUC without permutations is indicated by a vertical red line
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also be influenced by emotional and cognitive factors
and is not solely determined by nociceptive input. Given
that the amygdala is important in the context of stress,
anxiety, and emotional responses, it is likely to be an
important site associated with the integration of these
responses during pain processing [37]. The hippocam-
pus is also integral to memory, mood, and stress-
related processes [38]. The globus pallidus functions
in the regulation of voluntary movement. Given the
known roles of these structures, the amygdala, hippo-
campus, and globus pallidus are likely to play roles
associated with pain-related negative emotional pro-
cessing in TN patients [37].

Neuroimaging features and statistical methods selection
Prior research has revealed that not all brain regions in
the pain matrix are significantly altered in the context of
TN, typically owing to variability with respect to sample
size, image acquisition, postprocessing, and other meth-
odological variables among studies [10]. The voxel-based
morphometry (VBM) morphometric analysis program
(MAP) is typically used as a post-processing approach to
explore TN-related morphological alterations. While
VBM methods are robust and can be readily imple-
mented, they are subject to certain inherent limitations.
They do not contain spatial relationships across the

cortical surface, and registration errors may contribute
to subtle changes being overlooked [39].
Herein, we report two primary findings. First, our

results indicate that surface-based analysis processing
approaches may be better suited to conducting quantita-
tive, statistical morphometric analyses owing to their
subvoxel accuracy and the potential for the detection of
relatively subtle local changes. Second, rather than asses-
sing only a single neuroimaging feature, we were able to
extract data pertaining to cortical thickness, surface area,
and myelin content in order to obtain a more compre-
hensive overview of TN-related morphological abnor-
malities. Together, these results may enable researchers
to better establish the robustness of these findings, offer-
ing new insights into the nature of TN-related neuro-
anatomical changes [40].

Limitation
The results of this study are subject to three primary
limitations. For one, the sample size was relatively small
owing to the exclusion of subjects when strict criteria
were used, although this size was still larger than in pre-
vious studies. Second, no medication or psychological
examination analyses were performed for study partici-
pants. In the future, assessment of mental status and
medication use will be performed to further understand

Fig. 4 Systematic review of whole-brain studies assessing TN-related neuroimaging patterns. Sample size and quantitative MRI approaches are
indicated along with reported findings (Red: increased cortical thickness or volume; Blue: decreased cortical thickness or volume, light blue: significant
outcomes without correction; white: no assessment) across 3 brain subsystems (neocortical, subcortical structures and brainstem). VBM: voxel-based
morphometry; CTA: cortical thickness analysis; SSA: surface-based shape analysis; FDR: false discovery rate; FWE: family-wise error; M1: primary
somatosensory cortex; Fron. pole: frontal pole; OFC: orbitofrontal cortex; dPFC: dorsolateral prefrontal cortex; MFG: middle frontal gyrus; IFG: inferior
frontal gyrus; ACC: anterior cingulate cortex; MCC: midcingulate cortex; PCC: posterior cingulate cortex; AG: angular gyrus; Ant.Ins: anterior insula;
Post.Ins: posterior insula; Fusi: fusiform gyrus; Nac: nucleus accumbens; Amyg: amygdala; Cd: caudate nucleus; Thal: thalamus; PAG: periaqueductal gray
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the psychopathological spectrum of TN. Finally, no
patients with headache-related pain were included as
disease controls, as high-resolution MRI data were un-
available for individuals with migraine or cluster head-
aches given that these conditions are not treated via a
surgical approach. Future efforts to improve the under-
lying data will thus seek to overcome these limitations.

Conclusions
In summary, these data demonstrate that TN is associ-
ated with distinctive whole-brain structural neuroimag-
ing patterns, underscoring the value of machine learning
as an approach to differentiating between morphological
phenotypes, ultimately revealing the full spectrum of the
disease, and highlighting relevant diagnostic biomarkers.

Abbreviations
ACC: Anterior cingulate cortex; AG: Angular gyrus; Amyg: Amygdala;
Ant.Ins: Anterior insula; AUC: Area under the curve; Cd: Caudate nucleus;
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