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Abstract

Background: The migraine brain seems to undergo cyclic fluctuations of sensory processing. For instance, during
the preictal phase, migraineurs experience symptoms and signs of altered pain perception as well as other well-
known premonitory CNS-symptoms. In the present study we measured EEG-activation to non-painful motor and
sensorimotor tasks in the different phases of the migraine cycle by longitudinal measurements of beta event
related desynchronization (beta-ERD).

Methods: We recorded electroencephalography (EEG) of 41 migraine patients and 31 healthy controls. Each subject
underwent three EEG recordings on three different days with classification of each EEG recording according to the
actual migraine phase. During each recording, subjects performed one motor and one sensorimotor task with the
flexion-extension movement of the right wrist.

Results: Migraine patients had significantly increased beta-ERD and higher baseline beta power at the contralateral
C3 electrode overlying the primary sensorimotor cortex in the preictal phase compared to the interictal phase. We
found no significant differences in beta-ERD or baseline beta power between interictal migraineurs and controls.

Conclusion: Increased preictal baseline beta activity may reflect a decrease in pre-activation in the sensorimotor
cortex. Altered pre-activation may lead to changes in thresholds for inhibitory responses and increased beta-ERD
response, possibly reflecting a generally increased preictal cortical responsivity in migraine. Cyclic fluctuations in the
activity of second- and third-order afferent somatosensory neurons, and their associated cortical and/or thalamic
interneurons, may accordingly also be a central part of the migraine pathophysiology.
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Introduction
Migraine patients undergo transient clinical and neuro-
physiological changes before, during and after headache
attacks. These intervals define the phases of the migraine
cycle, and pain perception changes transiently between
the phases [1, 2]. In the days and hours preceding
headache, various other symptoms including yawning,
nausea, changes in mood and activity, fatigue and neck
symptoms emerge [3–9]. Furthermore, neuroimaging

and neurophysiological studies show alterations of the
central nervous system (CNS) preceding the eventual
aura and the pain [2, 10–20]. Sensitized thalamic
neurons may mediate allodynia and hyperalgesia [8, 21],
and the connectivity between thalamus and several brain
regions has also been shown to undergo cyclic changes in
migraineurs [22]. However, there is disagreement between
different studies regarding whether the migraine brain
become hypo- or hyperexcitable [19, 23–25]. Further
mapping of the preictal neurophysiological state may reveal
the probable CNS generators for the migraine attacks.
One technique for measuring cortical activation and

increased excitability during sensorimotor processing
is beta event-related desynchronization (beta-ERD)
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[26–28]. Event related desynchronization and
synchronization (ERD/ERS) are electrophysiological
features that represent an induced, time-locked, non-
phase-locked response to events. These responses are sub-
ject to changes in neuronal synchrony. Furthermore, they
are specific for frequencies in the electroencephalography
(EEG). In general the ERD/ERS is understood to represent
changes in activity of the interactions between thalamo-
cortical networks and cortical interneurons [29]. The
cortical activity accompanying voluntary limb movement
is for instance represented by ERD of alpha and beta
bands in the contralateral sensorimotor cortex, reflecting
cortical activation with enhanced information processing
[27, 28]. More recent knowledge of time averaged beta-
ERD suggest that the strength of the ERD response during
hand movements represents mostly the afferent proprio-
ceptive sensation and sensory processing [30]. One study
of fibromyalgia patients showed altered beta-ERD in
response to tactile stimulation, which was interpreted by
the authors as physiological changes that contribute to
chronic pain in this patient group [31]. This technique
may accordingly be useful for investigating cortical
sensory processing in migraine patients.
As the migraine brain is subject to cyclic neurophysio-

logical fluctuations, it is advantageous to conduct longi-
tudinal studies [32]. In a recent paper on post-
movement beta synchronization (PMBS) in migraine
[14], we revealed cyclic fluctuations of post-stimulation
inhibition in sensorimotor cortex. To our knowledge the
actual desynchronization during movement has not been
analysed previously in migraine. Thus, in the present
paper we aimed to measure thalamocortical excitability
in migraine patients by cortical beta-ERD during sensory
processing of afferent inputs from hand movements.
The first primary aim was to compare cyclic changes
from the interictal baseline to the preictal, ictal and post-
ictal phases. The second primary aim was to compare
interictal beta-ERD between migraineurs and healthy
controls. A third, and secondary, aim was to evaluate if
these electrophysiological responses correlated with clin-
ical symptoms and severity.

Subjects and methods
Subjects
The general methodology for this study is described in
our previous papers [14, 18–20, 32, 33]. We recruited
episodic migraine patients by a newspaper advertise-
ment, screening by trained nurses, and evaluation for in-
clusion by a neurologist [32]. They had 2–6 migraine
attacks each month. Healthy controls were recruited
among blood donors. Exclusion criteria were frequent
episodic or chronic tension-type headache, acute or
chronic disease, pregnancy, alcohol or drug abuse,
neuroactive drug use and migraine prophylactic drugs

within four weeks before the test. We included 41
migraine patients and 31 healthy controls. All but 4
patients and 3 controls were right handed.
We recorded demographic data on all subjects in

addition to clinical presentation of the migraine patients
by a questionnaire and a semi-structured interview
(Table 1). Every migraine patient also completed a
headache diary from 2 weeks before inclusion until 2
weeks after the last EEG recording. This enabled us to
classify the headache and its temporal relationship to the
EEG recordings as preictal (< 36 h before attack), postic-
tal (< 36 h after attack), ictal (pain attack) and interictal
(> 36 h from attack). The choice of 36 h cut off is based
on an electronic diary study revealing that reliable pre-
monitory symptoms mainly occurred within a one-day
cut off [7], and the utility of the 36 h cut off used in our
previous EEG-studies in migraine [14, 18–20, 32, 33].
Every subject (except one) had three EEG recordings at
the same time of day with 3–10 days intervals. Thirty-
three patients had at least one interictal recording.
Patients with both near-attack and interictal recordings
formed three additional migraine subgroups for intrain-
dividual paired analysis (Table 1). Six patients had visual
aura, two of whom with additional somatosensory aura.
Staff involved in data recording and EEG-response

processing was blinded to the diagnosis status. The sub-
jects received NOK 1000 (about EUR 103 with current
exchange rates) as compensation to cover expenses after
completing all three recordings. The compensation was
not mentioned in the advertisement.

EEG recordings and experimental setup
We recorded approximately 30 min EEG with eyes
closed. Five minutes undisturbed relaxed wakefulness
was followed by a motor and a sensorimotor test and by
photic stimulation. We have previously reported resting
state quantitative EEG, steady-state visual evoked poten-
tials and PMBS [14, 18, 19, 32, 33].
We attached twenty-four scalp electrodes according to

the 10/20 international system [34] with channels for lat-
eral anterior temporal electrodes, horizontal and vertical
eye movements, and ECG. EEG was recorded digitally in
Nervus 3.0 with M40 amplifier (Natus Medical Inc., Pleas-
anton, CA 94566, USA) and common reference with 256
Hz sampling rate. We used an average reference montage
with low- and high-pass filter of 0.5 and 70Hz in addition
to notch filter (50 Hz). Two EMG-channels for flexion
and extension were included in the EEG recording for de-
termination of movement epochs (Fig. 1).
Each subject performed both a motor test (M) and a

sensorimotor test (SM) with approximately 30 repeated
movements of the right arm in each test. The order of
tests was randomized for each subject and fixed for each
day of recording for the same subject. The instructions
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given to all subjects were the following: Each test would
last about 8 min with a light blink indicating when to
start each movement. For the motor test, subjects were
to first flex their wrist for 2 s, then extend their wrist for
2 s, followed by about 15 s of relaxation. For the sensori-
motor test an identical flexion-extension movement sup-
plemented by a discrimination task was performed: A

bowl of different material spheres (wood or metal) was
placed about 5 cm below the neutrally positioned fingers
so that the fingers were in contact with the spheres in
the flexed position. The task was to use the 2 s in the
flexed position to scan spheres lightly with their finger-
tips to detect if a sphere of wood was present in the
bowl or not. The right arm was used in both sequences.

Table 1 Demographic and clinical data on groups used in interictal analysis (comparing recordings in interictal migraineurs and
controls) and subgroups used in paired analysis

Migraineurs for paired analysis2

Interictal recordings1 Preictal Ictal Postictal

(n = 33) (n = 11) (n = 13) (n = 9)

Women/men 30/3 11/0 12/1 7/2

MwoA/MA 27/6 9/2 10/3 8/1

Age (years) 36.5 (12.7) 37.3 (12.9) 37.5 (12.5) 41.3 (12.8)

Headache history (years) 19.3 (11.0) 20.5 (11.7) 20.5 (9.9) 18.1 (13.1)

Headache days last 3 months 6.2 (4.0) 6.7 (4.8) 7.2 (4.7) 4.2 (2.3)

Headache intensity (0–4) 2.4 (0.7) 2.4 (0.7) 2.3 (0.6) 2.2 (1.0)

Headache duration (h) 17.8 (22.0) 15.9 (20.2) 14.9 (17.3) 18.4 (30.5)

Photophobia (0–2)3 1.4 (0.7) 1.4 (0.7) 1.0 (0.8) 1.2 (0.7)

Phonophobia (0–2)3 1.1 (0.8) 1.2 (0.7) 0.8 (0.8) 1.2 (0.8)

MA =migraine with aura, MwoA =migraine without aura. Mean (SD) or numbers
1Migraineurs with at least one interictal EEG recording
2Subgroups with both an interictal EEG recording (> 36 h from attack) and a preictal (< 36 h before attack), ictal or postictal (< 36 h after attack) EEG recording
3Numerical definition: 0 – none, 1 – some, 2 – substantial
The control group consisted of 27 women and 3 men (n = 30) with a mean age of 39.7 (11.5)

Fig. 1 EEG, EMG (ecR: radial wrist extensors, fR: forearm wrist flexors), ECG and photic channels from recording of one single movement. MovStart
and MovEnd markers indicate start and end of movement as shown by EMG channels. The photic channel marker represents a light blink as a
sign for the subject to prepare for executing the task. EEG channels visually revealing desynchronization from start of movement
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ERD analysis
IIR-filtered data in the 12–19 Hz beta frequency band
[35, 36] from sensorimotor cortices electrodes C3 (left
side, contralateral) and C4 (right side, ipsilateral), were
exported in 256 Hz resolution from each test and used
for the beta-ERD analysis. Voluntary movement intent
lowers beta band activity close to the contralateral
sensorimotor cortical area, and this beta-ERD spreads
and becomes bilateral right before movement execution
[29, 37, 38]. We averaged the squared EEG-amplitude
across all movements within the same test [29]. Move-
ment onset and offset were marked (Fig. 1). We used the
EEG-segment from − 3 s to − 1 s (prior to start of move-
ment) as baseline and the EEG-segment from 1 s to 3 s
after movement onset for ERD-calculation as established
in previous studies [27, 31]. ERD was thereafter calcu-
lated as the ratio of power in the activity period to
power in the baseline period [27]. ERD can be observed
as reduced EEG-amplitude (Fig. 1) and as reduced beta-
power during movement (Fig. 2).

Statistical analysis
For each migraine patient we selected one test for each
cyclic phase that was available (interictal, preictal, ictal
and postictal). If several tests for the same phase were
available, we chose the second one. We selected control
EEGs with a similar test-order distribution as the interic-
tal migraine group.
We used paired Student’s t-tests for the three primary

pre-planned intrasubject contrasts. Two-sided p-values
< 0.05 were regarded as significant, and p-values < 0.10
were regarded as trends. A paired analysis with 11 pairs
has approximately 77% power to detect an effect = 90%
of group SD [32].
To evaluate the combined effects of “phase”, “task”

and “side” factors, we also performed three separate
repeated measures ANOVAs (R-ANOVA) within the
migraine group (preictal-interictal, ictal-interictal and
postictal-interictal differences respectively). Three
within-subject factors were specified; “phase”, “side” (C3
vs C4) and “SM/M” (sensorimotor vs motor test).
Similarly, to evaluate differences between controls and

migraineurs in the interictal phase, we used two sample
Student’s t-test followed by R-ANOVA on LN-
transformed ERD-ratios. We used within-subject factors
“side” (C3 vs C4) and “SM/M” (sensorimotor vs motor
test), and between-subjects factor “group” (CO vs MIG).
We calculated exploratory Spearman rho correlations

for headache history duration, usual attack duration, in-
dividual scores on headache frequency (0–4), usual
headache intensity (0–4), individual scores on photopho-
bia (0–2) and individual scores on phonophobia (0–2),
and beta-ERD.

Results
Responses were generally larger (lower ratios) for SM
than for M-tasks (Table 2), and the task-factor was
significant both in preictal and ictal phases (Table 3).

Paired analyses for preictal, ictal and postictal phases
compared to the interictal period
Paired comparison (Table 2) revealed significantly in-
creased beta-ERD responses in contralateral sensori-
motor cortex (C3) in the preictal phase compared to the
interictal phase for both the SM and M-tasks (C3 SM,
p = 0.038; C3 M, p = 0.049; Fig. 3). However, R-ANOVA

Fig. 2 a Grand mean power across subjects at the contralateral C3
electrode for the sensorimotor task in controls and interictal
migraine patients. b Grand mean power across subjects at the
contralateral C3 electrode for the sensorimotor task in migraine
patients for interictal and preictal recordings. First two seconds (−3
to − 1) represent pre-movement onset baseline. 0 represent start of
movement. Broken vertical lines indicate the selected interval
(1 to 3 s) for the ERD period
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(Table 3) revealed only a trend towards a difference
between the interictal and preictal phase (p = 0.089) pre-
sumably because the C4-response was similar in preictal
and interictal phases (Table 2). Furthermore, paired Stu-
dent’s t-tests for baseline (Table 4) revealed significantly
increased beta power in contralateral sensorimotor cor-
tex (C3) in the preictal phase compared to the interictal
phase for both the SM and M-tasks (C3 SM, p = 0.007;
C3 M, p = 0.048). We also discovered significantly
increased baseline beta power (Table 4) in ipsilateral
sensorimotor cortex (C4) in the ictal phase compared to
the interictal phase for the SM test (C4 SM, p = 0.009).

Interictal analyses between migraine patients and controls
Contralateral beta-ERD was more evident for the SM-
task than for the M-task, both in migraine (SM test ratio
0.79) and controls (SM test ratio 0.82; Table 5). This was
also shown by a significant effect of SM/M in the R-
ANOVA analysis (p < 0.001; Table 6 and Fig. 3). R-
ANOVA confirmed no overall difference in beta-ERD
between migraine patients and controls (Table 6). For
both groups we observed a generally stronger beta-ERD
at the contralateral side (C3) revealed by a significant
effect of side (Table 6). We found no significant
differences in baseline beta power between interictal
migraineurs and controls.

Relationship between beta-ERD and clinical variables
In order to limit the number of estimations, correlation
coefficients were only calculated from contralateral beta-
ERD values in the interictal and preictal phases. No
significant correlations were found for these variables. A
trend was seen towards a positive correlation between
preictal contralateral (C3) beta-ERD in the M-task
and headache intensity (rho = 0.41, p = 0.095), and to-
wards a negative correlation between interictal contra-
lateral (C3) beta-ERD in the SM-task and headache
history (rho = − 0.32, p = 0.076).

Discussion
The main result in this study was increased beta-ERD in
the preictal phase compared to the interictal phase over
contralateral sensorimotor cortex. This finding suggests
that cortical processing of sensorimotor input changes
during 36 h before the headache attack in migraine.
Based on current understanding of the beta-ERD prop-
erty during hand movement [27, 28, 30], the findings
suggest increased sensorimotor cortex excitability in the
preictal phase compared to the interictal phase. Another
important finding was the larger preictal baseline beta
activity in migraine, possibly representing lower sensori-
motor cortex pre-activation in the preictal phase. We
did not find this central sensory fluctuation during the
ictal phase, but the study was not powered to perform

Table 2 Beta-ERD responses for preictal-interictal, ictal-interictal
and postictal-interictal comparisons

Beta-ERD response

Mean ratio (± SD retransformed)

C3 Sensorimotor Interictal Compared period p

Preictal 0.84 (0.61–1.15) 0.71 (0.46–1.10) .038

Ictal 0.79 (0.62–1.01) 0.74 (0.54–1.02) .49

Postictal 0.74 (0.49–1.12) 0.73 (0.54–1.00) .97

C3 Motor

Preictal 1.12 (0.78–1.61) 0.96 (0.76–1.21) .049

Ictal 1.05 (0.72–1.52) 1.04 (0.69–1.55) .93

Postictal 0.93 (0.49–1.74) 0.73 (0.47–1.14) .23

C4 Sensorimotor

Preictal 0.83 (0.65–1.06) 0.71 (0.48–1.05) .23

Ictal 0.83 (0.56–1.21) 0.79 (0.51–1.24) .70

Postictal 0.68 (0.46–1.02) 0.72 (0.57–0.92) .72

C4 Motor

Preictal 1.10 (0.70–1.70) 1.14 (0.74–1.74) .76

Ictal 1.19 (0.76–1.85) 1.23 (0.82–1.86) .73

Postictal 1.06 (0.57–1.99) 0.76 (0.44–1.34) .23

Beta-ERD response is the ratio between mean power in the interval from 1 to 3 s
after movement onset and mean power in the interval− 3 to − 1 s before
movement onset (baseline). Ratios were LN-transformed before statistical analysis
and retransformed to mean ratios and mean ± SD for tabulation. Paired Student’s
t-tests are included. EEG from central electrodes C3 (contralateral, left) and C4
(ipsilateral right) for the sensorimotor test and motor test
Bold entries are significant p-values

Table 3 Repeated measures ANOVA beta-ERD paired analysis in
different phases of the migraine cycle (preictal, ictal and
postictal; compared to a paired interictal recording)

Beta-ERD response

Within subjects effects Preictal Ictal Postictal

F (1, 10) p F (1, 12) p F (1, 8) p

Phase 3.472 .089 .045 .84 .833 .39

Side .319 .58 3.318 .094 .162 .70

SM/M 6.084 .031 18.706 .001 2.623 .14

Side × SM/M 1.231 .29 3.448 .088 3.156 .11

Side × Phase 3.105 .11 .533 .48 .094 .77

SM/M × Phase .539 .48 .305 .59 1.721 .23

Side × SM/M × Phase 2.533 .14 .125 .73 2.072 .19

Paired analysis of subgroups preictal (< 36 h before migraine pain attack), ictal
and postictal (< 36 h after migraine pain attack). Beta-ERD response is the ratio
between mean power in the interval from 1 to 3 s after movement onset and
mean power in the interval − 3 to −1 s before movement onset (baseline).
Ratios were LN-transformed before statistical analysis. Factors used were side
(C3 vs C4 electrode), SM/M (sensorimotor vs motor) and cyclic phase
(preictal-interictal, ictal-interictal and postictal-interictal)
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direct comparisons between the preictal and the ictal
phase. Moreover, we did not discover any significant dif-
ferences in baseline beta power or beta-ERD between
migraineurs in the interictal phase and control subjects.
We observed generally larger strength of ERD during

the sensorimotor test than during the pure motor test.
The sensorimotor process measured as beta-ERD is av-
eraged over time and consists of several sub-processes
from different neuronal networks including motor
intention, motor planning, command generation and
sensory feedback. To execute movement over time it is
necessary to maintain motor processing of propriocep-
tive sensory feedback. Studies on beta-ERD have shown

Fig. 3 Beta-ERD ratios (movement interval divided by baseline
interval) for contralateral sensorimotor cortex (C3) with lower ratios
indicating increased ERD-response. Error bars are mean ± SD
(retransformed). a The figure is illustrating generally larger beta-ERD
response for sensorimotor test than for motor test (significant effect
of SM/M in the R-ANOVA analysis (p < 0.001). b Beta-ERD was
significantly increased preictally (p = 0.038)

Table 4 Baseline beta power for preictal-interictal, ictal-interictal
and postictal-interictal

Interval mean Interictal Compared period

C3 Sensorimotor p

Preictal 1.27 (1.05–1.50) 1.34 (1.08–1.59) .007

Ictal 1.23 (1.05–1.41) 1.24 (1.03–1.46) .696

Postictal 1.23 (0.99–1.46) 1.21 (1.08–1.35) .802

C3 Motor

Preictal 1.28 (1.07–1.49) 1.33 (1.08–1.58) .048

Ictal 1.25 (1.07–1.42) 1.25 (1.06–1.44) .868

Postictal 1.26 (1.01–1.50) 1.25 (1.04–1.45) .692

C4 Sensorimotor

Preictal 1.31 (1.09–1.54) 1.34 (1.07–1.62) .335

Ictal 1.23 (1.03–1.43) 1.28 (1.05–1.50) .009

Postictal 1.26 (1.04–1.49) 1.25 (1.10–1.39) .692

C4 Motor

Preictal 1.32 (1.10–1.55) 1.34 (1.09–1.59) .637

Ictal 1.27 (1.07–1.46) 1.28 (1.05–1.50) .648

Postictal 1.29 (1.05–1.53) 1.28 (1.04–1.51) .765

Beta power to the 0.25th power in the interval − 3 to −1 s before movement
onset (baseline). Tabulated as mean ± SD. Post-hoc paired Student’s t-tests are
included. EEG from central electrodes C3 (contralateral, left) and C4 (ipsilateral,
right) for the sensorimotor test and motor test

Table 5 Beta-ERD mean of response/baseline ratios in interictal
migraine subjects and controls

Beta-ERD response Mean ratio (± SD retransformed)

Migraine Control t df p

C3 SM 0.79 (0.54–1.16) 0.82 (0.51–1.32) .30 57.4 .76

C3 M 0.99 (0.65–1.51) 0.88 (0.61–1.28) −1.12 61.8 .27

C4 SM 0.77 (0.53–1.13) 0.87 (0.58–1.31) 1.21 60.6 .23

C4 M 1.05 (0.63–1.74) 1.07 (0.70–1.64) .14 61.3 .89

Beta-ERD response is the ratio between mean power in the interval from 1 to
3 s after movement onset and mean power in the interval − 3 to −1 s before
movement onset (baseline). Ratios were LN-transformed before statistical
analysis and retransformed to mean ratios and mean ± SD for tabulation.
Two-sample Student’s t-tests (equal variance not assumed) are included. EEG
from central electrodes C3 (contralateral, left) and C4 (ipsilateral, right).
SM = sensorimotor test, M =motor test
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the motor command-generating process to have little ef-
fect on the ERD response. Instead, ERD seems to reflect
variation in proprioceptive sensation [30]. This theory
might explain why the ERD response was larger for the
sensorimotor task compared to the motor task. Accord-
ingly, the observed cyclic fluctuation of beta-ERD in
migraineurs may represent a relative change in central
sensory processing.
The present results can be largely explained as an

increased contralateral sensorimotor cortical response to
movement in the preictal phase compared to the interic-
tal phase. Increased ERD response may reflect increased
cortical excitability. However, increased baseline beta
power suggests increased preictal intracortical inhibition
and/or less preictal thalamocortical activation prior to
stimuli. The findings therefore indicate that cortical
excitation during the task is increased relative to an
altered baseline. We interpret this as reduced sensori-
motor cortical pre-activation in the preictal phase.
Reduced pre-activation was originally proposed to

reflect reduced serotenoergic “state setting” in order to
explain intensity-dependence of auditory evoked poten-
tials [39] and a possible VEP-habituation deficit interic-
tally in migraine [40]. However, neither hyperexcitability,
nor the preferred concept of “hyperresponsitivity” [41],
have been confirmed in later blinded studies of interictal
VEP [42, 43].
Cosentino et al. [23] found normal preictal potenti-

ation of motor evoked potential trains (5 Hz MEP) in
migraine while flat or inhibitory patterns were observed
in interictal, ictal and postictal phases. This MEP-
potentiation is thought to be mediated by cortical short-
term synaptic enhancement mainly due to calcium-
dependent regulation of glutamate release. Their results
were interpreted as high (i.e. normal) threshold for

inhibitory homeostatic responses in the preictal phase,
due to low motor cortex activity. [23]. The same group
suggested hyperresponsivity of excitatory intracortical
circuits as the pathogenesis of migraine [44]. Compensa-
tory effects such as lower thresholds for inhibitory
regulation and increased “top-down” inhibitory control
could explain normal interictal cortical activation despite
this underlying cortical hyperresponsivity [44].
Destabilization of this excitatory/inhibitory balance
could be the precipitating factor triggering the migraine
attack. Decrease in cortical activation observed as in-
creased beta activity in this study may cause higher
thresholds for inhibitory homeostatic plasticity in the
preictal phase as seen in the mentioned study of MEP-
potentiation [23, 44]. Consequently, reduced inhibitory
control of the suggested primitive hyperresponsivity
might be represented as increased preictal beta-ERD as
seen in this study.
In our previous article we found increased preictal

PMBS in the ipsilateral sensorimotor cortex [14], sug-
gesting increased inhibition 1–3 s after the termination
of movement. Interneurons receiving facilitatory stimuli
from interhemispheric projections [14, 45–47] may also
be involved because PMBS-changes was mostly ipsilat-
eral [13]. Hence, the combined results of increased
preictal baseline-beta, beta-ERD and PMBS suggest that
the sensorimotor cortex may undergo an increased
deactivation-activation-deactivation cycle within the few
seconds before, during and after the sensorimotor move-
ment task. This may reflect an instability of thalamocor-
tical, interhemispheric and intracortical regulatory
mechanisms in the preictal phase.
Preictal cortical deactivation is in concert with recent

findings of reduced baseline pain scores that suggested
enhanced preictal endogenous analgesia [1]. Reduced ha-
bituation to electrically induced pain [48] and tonic heat
pain [1] has been shown in the preictal phase of mi-
graine, suggesting hyperresponsivity to persistent painful
stimulation. Also, Marciszewski et al. found decreased
pain sensitivity combined with greater activation of
spinal trigeminal nucleus during noxious orofacial
stimulation in the period immediately before a migraine
attack [49].
Thalamus is probably also important in mediation of

dysfunctional pain modulation in migraine, at least
between attacks [50–52]. Our results show that there
also is increased responsivity during non-noxious sen-
sory stimuli at a thalamocortical level in the preictal
phase. Meylakh et al. [53] recently reported increased
power of infra-slow fMRI-oscillations in thalamus,
PAG and hypothalamus immediately prior to the
migraine attack. These findings hypothesized to reflect
increased amplitude and synchrony of astrocyte cal-
cium waves are difficult to compare with results

Table 6 Repeated measures ANOVA beta-ERD analysis of
interictal migraine patients compared to controls

Beta-ERD response

Within subjects effect F (1, 61) p

Side 7.24 .009

SM/M 14.65 <.001

Side × SM/M 10.27 .002

Side × Group 3.94 .052

SM/M × Group 1.36 .25

Side × SM/M × Group .40 .53

Between subjects effect F (1, 61) p

Group .027 .87

Beta-ERD response is the ratio between mean power in the interval from 1 to
3 s after movement onset and mean power in the interval − 3 to − 1 s before
movement onset (baseline). Ratios were LN-transformed before statistical
analysis. Within subject factors used were side (C3 vs C4 electrode) and SM/M
(sensorimotor vs motor task). The between subjects factor is Group (interictal
migraine vs controls)
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based on electrophysiological recordings. However,
recent longitudinal fMRI studies also suggest that a
hypothalamic-brainstem network dysfunction may be
relevant during the preictal phase of migraine [11].
We did not detect significant differences in baseline

beta power or beta-ERD between migraineurs in the
interictal phase and control subjects. Reduced interictal
cortical pre-activation has been proposed previously,
mainly based on a non-significant trend towards lower
first-block visual evoked potential (VEP) amplitude in
migraineurs [40, 54, 55]. However, first-block VEP amp-
litude is normal in most studies [42, 43]. Hence, neither
previous VEP nor present beta-ERD results support this
theory for the interictal phase in migraine. Furthermore,
the theory of cortical hyperresponsivity compensated
interictally by inhibitory control in migraine could be an
explanation of non-significant interictal analyses.
However, it is also possible that increased pre-activation
variability is present interictally, explaining why results
differ between studies.

Strengths and limitations of the study
It is possible that many of the neurophysiological
changes in the migraine brain are subtle, needing
higher-powered studies to be consistently observed.
Furthermore, a great challenge in evaluating the mi-
graine cycle is to conduct longitudinal studies with
enough subjects for paired recordings, and a greater
number of subjects with more test repetitions can de-
tect smaller changes. Small groups for paired analyses
may have contributed to the possibility of type II er-
rors in this study. However, a blinded, longitudinal
study design such as in the present study is important
to investigate the very phase specific alterations of
migraine pathophysiology [56].
Furthermore, healthy subjects were not screened for

relatives with migraine, and a few controls might in the-
ory be susceptible to migraine and to VEP-potentiation
[57]. Moreover, in a previous sensitivity analysis the
removal of controls with migraine relatives did not affect
the VEP habituation results [43]. This potential con-
founder may possibly contribute to the risk of type II
errors, but it should not affect present positive beta-ERD
findings.
Scalp electrical recordings is known to be contami-

nated by contributions of electromyography, possibly
from activation of scalp and neck muscles [58]. The
present study did not utilise specific methodology for
reducing such artefacts. However, EMG contamination
is mostly shown for frequencies above 20 Hz which is
higher than the frequency band chosen for our beta
power analyses [58].
In studies of event related dynamics, it is important to

differentiate between self-paced and triggered movement

as neurophysiological changes may be detected before
the movement itself when there is a planning phase [29].
All movements in this study was triggered to limit the
uncertainty in determining start of relevant cortical
activity during a planning phase.
As in our previous study [14], an a priori methodo-

logical selection of the interval 12–19 Hz as beta band
[35, 36] was conducted to avoid type I errors. However,
other studies on beta event related dynamics have
yielded results for different cut-offs for beta band fre-
quencies [59–62]. It is possible that identical oscilla-
tory processes are reflected by slightly different beta
band frequencies between subjects. Such interpersonal
differences may affect results from two-sample
statistics comparing groups, however the significant
findings in this study was found for longitudinal ana-
lyses of the same subjects. Furthermore, more recent
findings indicate that movement-related beta oscilla-
tions show high intraindividual reliability and are well
suited to detect individual differences in a longitu-
dinal study design [63].
The present ERD-calculation method does not

differentiate between phase-locked and non-phase-
locked activity [27], but this is seemingly not necessary
for movement related beta-alterations [64]. For future
studies it would be of interest also to try more advanced
time-frequency domain methods like event related spec-
tral perturbation (ERSP) also for movement related
ERD-paradigms [65].

Conclusion
We were able to show cyclic fluctuation of cortical sen-
sory processing in migraine patients through alterations
in beta-ERD and baseline beta power. In the 36-h period
before headache, there seems to be a decrease in cortical
pre-activation and an increase in the relative stimulus-
induced response. Altered pre-activation may lead to
changes in thresholds for inhibitory responses and
consequently increased beta-ERD response, possibly
reflecting a generally increased cortical responsivity in
migraine. We did not find this central sensory fluctu-
ation during the ictal phase, but the study was not pow-
ered to perform direct comparisons between the preictal
and the ictal phase. Cyclic alterations in the activity of
second- and third-order afferent somatosensory
neurons, and their associated cortical and/or thalamic
interneurons, may accordingly be a central part of the
migraine pathophysiology. Combined investigations of
cyclic fluctuations in event related responses (ERD/ERS)
and targeted transcranial magnetic stimulation (TMS)
paradigms should be conducted to understand the
involvement of different excitatory and inhibitory
pathways in migraine pathophysiology.
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