
RESEARCH ARTICLE Open Access

Abnormal brain white matter in patients
with right trigeminal neuralgia: a diffusion
tensor imaging study
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Abstract

Background: Idiopathic or classical trigeminal neuralgia (TN) is a chronic painful condition characterized by
intermittent pain attacks. Enough evidence demonstrates classical TN is related to neurovascular compression
(NVC) at the trigeminal root entry zone (REZ), but white matter change secondary to TN are not totally known.

Methods: Visual Analogue Scale (VAS) and diffusion tensor imaging were performed on 29 patients with right TN and
35 healthy individuals. Voxel-wise analyses were performed with TBSS using multiple diffusion metrics, including
fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD). Group differences
in these parameters were compared between right TN patients and controls using TBSS and correlations
between the white matter change and disease duration and VAS in right TN patients were assessed. Multiple
comparison correction were applied to test significant correlations.

Results: The right TN patients showed significantly lower FA and higher RD in most left white matter (P < 0.05,
FWE corrected). Moreover, negative correlations were observed between disease duration and the FA values of
left corona radiata, genu of corpus callosum, left external capsule and left cerebral peduncle, and between VAS
and the FA values of left corona radiata, left external capsule and left cerebral peduncle (P < 0.05). Positive
correlations were observed for disease duration and the RD values of left corona radiata, right external capsule,
left fornix cerebri and left cerebral peduncle, and for VAS and the RD values of left corona radiata and left
external capsule (P < 0.05). However, once Bonferroni corrections were applied, these correlations were not
statistically significant.

Conclusion: These findings suggest that TN selectively impairs widespread white matter, especially contralateral
hemisphere, which may be the hallmark of disease severity in TN patients.

Keywords: Trigeminal neuralgia, Neurovascular compression, Magnetic resonance imaging, Tract-based spatial
statistics, White matter

Background
Trigeminal neuralgia (TN) is the most common form of
facial neuropathic pain with an annual incidence of 4 to
5 new patients per 100,000 [1]. It is characterized by re-
current episodes of unilateral brief electric shock-like
pains localized to the sensory supply areas of trigeminal

nerve and has been considered as one of the most ser-
ious pains that can experience [2–4]. Idiopathic or clas-
sical TN is mainly caused by neurovascular compression
of trigeminal nerve at its root entry zone (REZ) and
microvascular decompression (MVD) surgery is most ef-
fective method for relieving neuralgic pain [3–7]. How-
ever, peripheral nerve injury caused by neurovascular
compression does not fully explain the persistence of
long-term recurrent pain in TN patients [8–11].
Neurovascular compression may result in focal demye-

lination of the trigeminal nerve at the REZ, which conse-
quently generates ectopic discharges and pathological
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cross-activation between afferent nerve fibers [12]. And
pain ensues. What’s more, this process may lead to cen-
tral white matter changes and/or higher brain structures
and sensitization of neurons [13–15]. Previous studies
have mostly concentrated on abnormalities of trigeminal
nerve [16], but the nature of assumed nerve abnormal-
ities is not known. Diffusion tensor imaging (DTI) based
on magnetic resonance imaging (MRI) has been consid-
ered as a useful and effective examination of the trigemi-
nal nerve system in great detail [8, 12, 17].
Previous studies have demonstrated white matter ab-

normalities due to chronic pain and peripheral nerve
damage in the TN patients [8, 16, 18]. The results of
these studies are similar. These studies demonstrate sig-
nificantly decreased FA and increased AD, RD and MD.
However, the mechanism of TN affecting brain white
matter remains unclear.
In order to further understand the relationship be-

tween TN and brain white matter plasticity, we exam-
ined white matter microstructural change and
correlation of between white matter abnormality and
disease duration and pain intensity in patients with clas-
sical TN.

Methods
Participants
Twenty-nine patients (age range 35–77 years; 20 females
and 9 males) with right-sided TN and 35 healthy control
subjects (age range 41–74 years; 27 females and 8 males)
were selected for this study. Patients were enrolled from
Department of Functional Neurosurgery of Pingjin Hos-
pital of Logistics University of Chinese People’s Armed
Police Forces (Additional file 1: Table S1) and control
subjects by newspaper advertisement. The patients
belonged to a consecutive series of patients who had
undergone evaluation for MVD surgery between 2014
and 2016. All these patients had a long duration (more
than 1 year) complaint of classical TN according to the
International Classification of Headache Disorders cri-
teria (third edition) [19] and had high-resolution im-
aging to exclude secondary causes of TN. Visual
analogue scale (VAS) [20] was used to assess pain inten-
sity in the TN patients. All patients were measured dur-
ing a painful attack and on medications. Exclusion
criteria [18] for both the patients and controls were as
follows: (1) other headache disorders; (2) chronic pain
elsewhere; (3) previous TN operations; (4) untreated
hypertension or diabetes mellitus; (5) left-handed; (6) al-
cohol or illicit drug abuse, or current intake of psycho-
active medications; and (7) MRI contraindications, such
as claustrophobia and metallic implants or devices in the
body. This study was approved by our institutional re-
view board, and written informed consent was obtained
from all patients and control subjects.

MRI data acquisition
DTI data were obtained using a 3.0-T MR scanner
(Verio system; Siemens, Erlangen, Germany) with a
12-channel head coil. Comfortable and tight foam pad-
ding was used to limit head movement. Diffusion
weighted images were obtained using a single-shot echo
planar imaging (EPI) sequence. The scanning location
was in alignment with the anterior-posterior commis-
sural plane. The integral parallel acquisition technique
(iPAT) was used and the acceleration factor was 2, which
can decrease image distortion from susceptibility arti-
facts. Diffusion sensitizing gradients were applied along
64 non-collinear directions (b = 1000 s/mm2) together
with an acquisition without diffusion weighting (b = 0 s/
mm2). The imaging parameters were applied as follows:
48 continuous axial slices, slice thickness of 3 mm and
no gap, field of view (FOV) = 256 mm × 256 mm, repeti-
tion time/echo time (TR/TE) = 8000/95 ms, and matrix
size = 128 × 128. The reconstruction matrix was 256 ×
256 with a voxel dimension of 1 mm× 1 mm × 3 mm.

Data preprocessing
All diffusion weighted images were carefully checked by
three radiologists to exclude apparent artifacts resulted
from instrument malfunction and subject motion. DTI
data was preprocessed using FMRIB’s diffusion toolbox
(FDT, http://www.fmrib.ox.ac.uk/fsl, FSL 4.0) [21]. First,
the eddy current distortions and motion artifacts were
corrected by using the affine alignment of each
diffusion-weighted image to the image of b = 0 s/mm2 in
the DTI dataset. Then, non-brain tissue from the aver-
age b0 image was removed using the FMRIB’s Brain Ex-
traction Toolbox, BET. The brain mask was applied to
the rest of the diffusion-weighted images. Finally, the dif-
fusion tensor was estimated for each voxel using the
DTIFIT function via linear regression to derive FA, MD,
AD and RD maps.

Tract-based spatial statistics (TBSS)
The following steps were adopted to perform
voxel-wise analysis of whole brain white matter mea-
sures using the TBSS package (http://www.fmrib.ox.ac
.uk/fsl/tbss/index.html) [22]. All subjects’ FA images
were aligned to a template of the averaged FA images
(FMRIB-58) in Montreal Neurological Institute (MNI)
space using a nonlinear registration algorithm imple-
mented in FNIRT (FMRIB’s nonlinear registration
Tool) [23]. After transformation into the MNI space,
a mean FA image was generated and thinned to create a
mean FA skeleton of white matter tracts. Each subject’s
aligned FA images were then projected onto the mean FA
skeleton according to filling the mean FA skeleton by FA
values, resulting in an alignment-invariant representation
of the central trajectory of white matter pathways for all
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subjects. These FA values were obtained by searching
perpendicular to the local skeleton structure for max-
imum value, which was from the nearest relevant
tract center. During the former registration step, this
second local coregistration step can alleviate the
malalignment of diffusion-weighted images. Next, this
process was repeated for each subject’s MD, AD and
RD map using the individual registration and projec-
tion vectors obtained in the FA nonlinear registration
and skeletonization.

Statistical analyses
Voxel-wise differences in FA, MD, AD and RD values of
white matter between TN patients and healthy controls
were tested using a permutation-based inference tool by
nonparametric statistic (“randomize”, part of FSL) and
two-sample t-tests. The mean FA skeleton was applied
as a mask (thresholded at a mean FA value of 0.2 to in-
clude only major fiber bundles and exclude peripheral
tracts with significant intersubject variability), and the
number of permutations was set to 5000 to allow robust
statistical inference. Age and gender were entered into
the analysis as confound regressors. The significance
threshold for intergroup differences was P < 0.05 after
correcting for family wise error (FWE) applying the
threshold-free cluster enhancement (TFCE) option by
permutation-testing tool in FSL. The white matter tracts
were identified using the Johns Hopkins University
ICBM-DTI-81 White-Matter Labels provided in the FSL
toolbox. In addition, significant white matter clusters
were described by their coordinates in MNI convention
and by their cluster size.
To study the relationship between clinical variables

(disease duration and VAS) and each of the DTI mea-
sures, region-of-interest- (ROI-) based correlation ana-
lyses was performed by using a partial correlation (P
< 0.05). Regional ROI masks were created for brain sites
using clusters determined by voxel-by-voxel intergroup
analysis procedures mentioned above. After the extrac-
tion of each ROI, the mean FA, MD, AD or RD value of
the ROI were calculated. Finally, the correlations were
calculated between the DTI measures of each ROI and
disease duration and VAS with age and gender as covari-
ates of no interest. Because so many correlations were
run, the Bonferroni correction was applied to correct for
multiple correlation comparisons.
The demographic and clinical data were compared

between the two groups using independent-sample
t-test for age and Chi-square test for sex distribution,
which was conducted with Statistical Package for the
Social Sciences version 22.0 (SPSS, Chicago, Ill, USA).
Differences were considered significant when P was
less than 0.05.

Results
Demographic and clinical data
In our study, 35 patients with right-sided TN were en-
rolled. Due to the abnormal data quality and no surgery,
6 patients were excluded in this study. Therefore, 29 pa-
tients (age range 35–77 years; 20 females and 9 males)
and 35 healthy control subjects (age range 41–74 years;
27 females and 8 males) were selected for this study.
Demographic and clinical characteristics of each group
are summarized in Additional file 1: Table S2. The
self-reported duration in TN patients was 10.2 ± 9.6 years
(range: 1–30 years) and the VAS was 5.9 ± 3.1 (range: 2–
10). There were no significant differences (P > 0.05) be-
tween TN patients and healthy controls in age and
gender.

Comparison of DTI metrics between TN and controls
Compared with the control group, the TN group showed
significantly lower FA in the bilateral superior corona
radiata, bilateral anterior corona radiata, body of corpus
callosum, splenium of corpus callosum, genu of corpus
callosum, left cingulum, left superior fronto-occipital
fasciculus, bilateral anterior limb of internal capsule, left
posterior limb of internal capsule, left external capsule,
left fornix cerebri, internal sagittal stratum and left
cerebral peduncle (P < 0.05, FWE corrected) (Fig. 1;
Additional file 1: Table S3). Moreover, the TN group
demonstrated higher RD in the bilateral superior corona
radiata, bilateral anterior corona radiata, body of corpus
callosum, splenium of corpus callosum, left cingulum,
left superior fronto-occipital fasciculus, bilateral anterior
limb of internal capsule, bilateral posterior limb of in-
ternal capsule, bilateral external capsule, left retrolenti-
cular portion, left fornix cerebri, pontine crossing tract,
corticospinal tract and left cerebral peduncle (P < 0.05,
FWE corrected) (Additional file 1: Figure S1, Table S3).
However, no significant difference was found in MD and
AD between the TN group and control group.

Correlations between clinical variables and altered DTI
metrics
In the TN patients, negative correlations were observed
between disease duration and the FA values of left anter-
ior corona radiata (r = 0.211, P = 0.012), genu of corpus
callosum (r = 0.166, P = 0.028), left external capsule (r =
0.190, P = 0.018), left cerebral peduncle (r = 0.192, P =
0.017), and between VAS and the FA values of left anter-
ior corona radiata (r = 0.221, P = 0.010), left external cap-
sule (r = 0.218, P = 0.011), left cerebral peduncle (r =
0.168, P = 0.027) (Fig. 2). Positive correlations were ob-
served for disease duration and the RD values of left an-
terior corona radiata (r = 0.190, P = 0.018), right external
capsule (r = 0.170, P = 0.026), left fornix cerebri (r =
0.168, P = 0.027), left cerebral peduncle (r = 0.156, P =
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0.034), and for VAS and the RD values of left anterior
corona radiata (r = 0.174, P = 0.025), left external capsule
(r = 0.191, P = 0.018) (Additional file 1: Figure S2). How-
ever, once Bonferroni corrections were applied, these
correlations were not statistically significant.

Discussion
Methological consideration
Compared with voxel-based analysis (VBA), the TBSS
method is applied more and more popularly to reveal
microstructural alterations of white matter fibers be-
tween groups [24–27]. VBA has two severe limitations
about different subjects’ alignment of FA images and
the self-willed choice of smoothing kernels without
any principle or standard [28]. TBSS solve these is-
sues using carefully tuned non-linear registration, and
then projecting onto the “mean FA skeleton”(an
alignment-invariant tract representation). Moreover,
TBSS doesn’t need a smoothing process [22]. There-
fore, TBSS can avoid the two limitations and provides
us with more diffusion metrics [29]. In many disease
studies, TBSS has a wide application to research
microstructural white matter alterations, such as
adiposity, parkinsonism, Alzheimer’s disease (AD),
genetic disease, type2 diabetes mellitus and so on
[30–35]. In this study, we have been showed well re-
sults of the diffusion metrics (FA, MD, AD and RD)
in TBSS methods between groups.

White matter impairment in TN patients
The primary diffusion metrics (FA and MD) reflect over-
all white matter health, organization and maturation
[36]. In addition, AD reflects axon integrity and RD re-
flects myelin sheath integrity [31]. Both AD and RD are
of great significance in understanding the underlying
physiological mechanism [26]. Decreased FA values
maybe based on predominantly increase of RD or both
RD and AD [30]. The study of DeSouza et al. showed
the right-sided TN patients had significantly decreased
FA and increased RD, MD, and AD in the brain white
matter including the corpus callosum, posterior corona
radiata, cingulum, and superior longitudinal fasciculus.
Moreover, MD and RD changes of brain white matter in
TN patients maybe have relation to central nervous sys-
tem plasticity, neuroinflammation and edema [18]. In
our study, we found the similar results that reduced FA
and elevated RD in the corona radiata (mainly concen-
trating on bilateral superior corona radiate and anterior
corona radiata), corpus callosum and left cingulum.
Additionally, we found reduced FA and elevated RD in
the fronto-occipital fasciculus, internal capsule, external
capsule, fornix cerebri and cerebral peduncle in the TN
patients. Moreover, altered FA and RD was mainly lo-
cated in white matter of left hemisphere. However, the
differences of MD and AD were not statistically signifi-
cant. As we all know, TN is involved in trigeminal nerve
functional disorders, but other theories of central
nervous system pathology is not clear [18, 37]. Due to

Fig. 1 TBSS shows white matter regions with significant differences in FA between TN patients and healthy subjects (P < 0.05, FWE corrected).
Green represents mean FA skeleton of all participants; blue represents reduction in right TN patients. Coordinates are in millimeters along z axe
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peripheral trigeminal nerve injury, central nervous system
plasticity will most probably occur [18, 38, 39], including
fiber organization changes, astrocyte morphology and
angiogenesis [18, 40–42]. In our study, compared with
healthy controls, TN patients showed decreased FA. The
decreased FA may correspond to less fiber organization,
such as more axonal sprouting/branching, larger axons, or
more crossing fibers [18, 42]. Besides, neuropathic pain is
usually related to chronic painful influence on central ner-
vous system. This leads to central sensitization, a process
involving demyelination and neuroinflammation processes
[18]. The decreased FA is presumably caused by a signifi-
cant increase of RD, inferring that demyelination and neu-
roinflammation processes may lead to the impairment of
white matter integrity in the TN patients. The RD abnor-
malities maybe result from these mechanisms in the white
matter of TN patients [8].

Many studies have reported cortical and subcortical
gray matter impairment in the cognitive-affective,
sensory, modulation of pain, attention and motor re-
gions of TN patients [43–45]. In anatomy and/or
function respect, these brain areas are connected [13,
46–48]. In our study, we reported decreased FA and
increased RD in the corona radiata, corpus callosum,
cingulum, fronto-occipital fasciculus, internal cap-
sule, external capsule, fornix cerebri and cerebral
peduncle in the TN patients. These fiber connection
of brain regions is related to rapid transmission of
pain, attention and motor function [49], and maybe
lead to the unique sensory symptoms of TN. Our
finding also revealed that altered FA and RD was
mainly located in white matter of left hemisphere,
suggesting contralateral white matter lesions of TN
patients.

Fig. 2 Correlation between the decreased FA and disease duration and VAS. Coordinates are in millimeters along z axe
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Correlation analyses found negative correlations be-
tween the disease duration and the FA values of left an-
terior corona radiata, genu of corpus callosum, left
external capsule, left cerebral peduncle, indicating the
white matter impairment is more and more severe as
the disease progressed. With impairing progression of
left anterior corona radiata, left external capsule and left
cerebral peduncle, painful sensation is more serious.
What is more, we infer these regions are probably re-
lated to transmission of pain [50]. The RD and the dis-
ease duration also reveal positive correlations in the
regions of left anterior corona radiata, right external
capsule, left fornix cerebri, left cerebral peduncle, dem-
onstrating the white matter demyelination and neuroin-
flammation of these regions is aggravated in the disease
progression. And as demyelination and neuroinflamma-
tion of left anterior corona radiate and left external
capsule progresses, painful sensation is also more ser-
ious. Regrettably, the results of these correlation analyses
had not been able to withstand multiple comparison
correction.

Conclusion
In our study, we revealed directly differences between
the healthy control and right TN to demonstrate how
brain white matter is changed using TBSS methods, sug-
gesting that white matter impairment is the significant
hallmark in the right TN. Moreover, the correlation ana-
lyses between FA/RD and the disease duration and VAS
indicate white matter impairment is more and more se-
vere in the disease progression. And the pain is also
more serious with some regions of white matter impair-
ment. The white matter impairment is mostly based on
fiber organization, demyelination and neuroinflamma-
tion. So we can deeply understand the mechanism of
white matter change of TN patients.

Limitations
Several limitations should be considered when inter-
preting our results. First, the sample size of the
present study was not much, which might cause cor-
relation analyses to fail to withstand multiple com-
parison correction. Second, non-isotropic voxels were
used for DTI data acquisition in this study. In terms
of the tensor evaluation, isotropic voxels are more ac-
curate than non-isotropic voxels. Finally, all patients
in our study were on medications for TN pain and
the anticonvulsant carbamazepine is the most com-
mon. The influences of antiepileptics on brain struc-
ture are not clear. Future studies are needed to
collect more sample sizes, adopt more optimized DTI
parameters and avoid the effects of drugs.

Additional file

Additional file 1: Table S1. Characteristics and findings in 29 right TN
patients who underwent MVD. Table S2. Demographic and clinical data
for TN patients and healthy controls. Table S3. Comparison of DTI
metrics between TN and controls. Figure S1. TBSS shows white matter
regions with significant differences in RD between TN patients and
healthy subjects (P < 0.05, FWE corrected). Green represents mean FA
skeleton of all participants; red denotes increase in right TN patients.
Coordinates are in millimeters along z axe. Figure S2. Correlation
between the increased RD and disease duration and VAS. Coordinates
are in millimeters along z axe. (DOC 1102 kb)
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