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Abstract

Background: Studies involving human pharmacological migraine models have predominantly focused on the
vasoactive effects of headache-inducing drugs, including sildenafil and calcitonin gene-related peptide (CGRP). However,
the role of possible glutamate level changes in the brainstem and thalamus is of emerging interest in the field of
migraine research bringing forth the need for a novel, validated method to study the biochemical effects in these areas.

Methods: We applied an optimized in vivo human pharmacological proton (1H) magnetic resonance spectroscopy (MRS)
protocol (PRESS, repetition time 3000 ms, echo time 37.6–38.3 ms) at 3.0 T in combination with sildenafil and CGRP in a
double-blind, placebo-controlled, randomized, double-dummy, three-way cross-over design. Seventeen healthy
participants were scanned with the 1H-MRS protocol at baseline and twice (at 40 min and 140 min) after drug
administration to investigate the sildenafil- and CGRP-induced glutamate changes in both brainstem and thalamus.

Results: The glutamate levels increased transiently in the brainstem at 40–70 min after sildenafil administration compared
to placebo (5.6%, P = 0.039). We found no sildenafil-induced glutamate changes in the thalamus, and no CGRP-induced
glutamate changes in the brainstem or thalamus compared to placebo. Both sildenafil and CGRP induced headache in
53%–62% of participants. We found no interaction in the glutamate levels in the brainstem or thalamus between
participants who developed sildenafil and/or CGRP-induced headache as compared to participants who did not.

Conclusions: The transient sildenafil-induced glutamate change in the brainstem possibly reflects increased excitability of
the brainstem neurons. CGRP did not induce brainstem or thalamic glutamate changes, suggesting that it rather exerts its
headache-inducing effects on the peripheral trigeminal pain pathways.
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Background
Human pharmacological migraine models have been
used for the past two decades with great success to
study migraine attack mechanisms using vasoactive
drugs such as calcitonin gene-related peptide (CGRP)
and sildenafil [1–7]. The models have been pivotal in
the development of new anti-migraine therapy [8].

Human pathophysiological studies applying these
models have predominantly focused on the cerebro-
vascular effects of the headache-inducing substances.
However, emerging evidence suggests that metabolic
changes, especially of brain glutamate levels [9, 10],
in the brainstem [11–15] and thalamus [15] are key
processes for the initiation of migraine headache at-
tacks and thereby potentially important effects of the
headache-inducing drugs. At present, methods for the
study of pharmacologically induced biochemical ef-
fects on the brainstem glutamate levels have not been
validated.
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Pharmacological proton (1H) magnetic resonance spec-
troscopy (MRS) provides the ability to non-invasively study
drug-induced biochemical changes in the brain. Imaging of
the deep brain structures, especially the brainstem by mag-
netic resonance imaging (MRI), is challenging due to the
small size of the region of interest, location in areas of rela-
tively high magnetic field inhomogeneity and potential
physiological artifacts. Thus, it is essential to systematically
investigate the quality and reproducibility of 1H-MRS mea-
surements in these areas before application of the method
in patients. Only a few 1H-MRS studies of the brainstem
have previously been conducted. One such study, of pa-
tients with amyotrophic lateral sclerosis, did not report data
on the reproducibility or variability of the glutamate mea-
surements [16], while other 1H-MRS brainstem studies did
not measure the glutamate concentrations at all [17–20] .
The headache-inducing drugs, CGRP and sildenafil, were

selected for the study based on their different modes of ac-
tion. CGRP is generally considered to exert its primary ef-
fect outside of the central nervous system (CNS), in the
meningeal vasculature and the first order trigeminal neu-
rons [21, 22], while sildenafil, as a lipophilic molecule, read-
ily crosses the blood-brain barrier [23].
Here, we conducted a double-blind, placebo-controlled,

randomized, double-dummy, three-way cross-over pharma-
cological 1H-MRS study to investigate the sildenafil- and
CGRP-induced glutamate concentration changes in healthy
participants. Our null-hypothesis was that the glutamate
levels are not altered in the brainstem of healthy partici-
pants after administration of sildenafil and CGRP when
compared to placebo. Additionally, we assessed the spectral
quality and variability of the glutamate measurements over
time in the brainstem based on our 1H-MRS protocol.

Methods
Participants
Healthy volunteers were recruited through announce-
ment on a Danish website for recruitment of partici-
pants to health research (www.forsoegsperson.dk).
Inclusion criteria were: age 18–50 years and weight 50–
100 kg. Exclusion criteria were: history of any primary
headache disorders (except episodic tension-type head-
ache for < 2 day per month during the last year) accord-
ing to the diagnostic criteria of the beta version of the
third International Classification of Headache Disorders
(ICHD-3 beta) [24], first-degree family members with
migraine or other primary headache disorders according
to ICHD-3 beta (except episodic tension-type headache
for < 6 days per month), daily intake of medication (ex-
cept oral contraceptives), no usage of safe contraception,
cardiovascular, cerebrovascular, or psychiatric disease,
and drug abuse. Participants were excluded if there were
any contraindications to MRI such as metal implants,
pacemaker, insulin pump, claustrophobia and/or surgical

procedure during the last 6 weeks before inclusion. We
also excluded participants with braces and teeth im-
plants of metal, which are normally regarded MRI com-
patible, to avoid potential MR scan artifacts in the deep
brain structures of interest.

Experimental design
All participants were randomly allocated to receive sil-
denafil, CGRP and placebo on three separate study days.
On each study day, participants underwent an MRI scan
protocol consisting of three scan sessions: a baseline
MRI scan, followed by two additional post drug adminis-
tration MRI scan sessions. The first post drug scan was
initiated at 40 min (scan 1), and the second scan was ini-
tiated at 140 min (scan 2) after administration of silden-
afil, CGRP or placebo (Fig. 1). MR spectra were obtained
from brainstem and thalamus during each scan.
On the sildenafil day, the participants received sil-

denafil as two 50 mg tablets (STADA, Bad Vilbel,
Germany) in two non-transparent capsules, combined
with placebo isotonic saline infusion into the cubital
vein for 20 min (Pressure tubes, Argon Medical De-
vices, The Hague, the Netherlands), at the time of in-
fusion start. On the CGRP day, the participants
received 1.5 μg/min human-alfa-CGRP (PolyPeptide,
Strasbourg, France) via infusion for 20 min combined
with placebo calcium in two non-transparent capsules.
On the placebo day, the participants received placebo
isotonic saline infusion for 20 min combined with
placebo calcium in two non-transparent capsules. The
sildenafil and CGRP dosages for the study were

Baseline MRS

Post drug MRS 
Scan 1

Post drug MRS
Scan 2

Sildenafil / CGRP / Placebo
0 min

40 min

140 min

Fig. 1 Flowchart of the study days
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determined based on findings of previous studies,
which reported sildenafil- and CGRP-induced head-
ache in healthy volunteers, and migraine-like attack in
migraine patients [1–7]. The randomization was ad-
ministrated by the Hospital Pharmacy of the Capital
Region of Denmark.
All participants were headache-free for at least 72 h

before each study day. The participants were not allowed
coffee, tea, cocoa, soft drinks, alcohol or tobacco for
12 h before study start on each study day, and fasted for
all food and beverages (except for water), for 4 h before
study start. Between scan 1 and scan 2, all participants
were offered a standardized small meal consisting of soft
bread with cheese, banana, and water. Other criteria for
the study days were no intake of any medication four
half-lives before the start of the study day, except for
oral contraception. After insertion of a peripheral venous
catheter (18G Vasofix® Safety, B.Braun, Melsungen,
Germany) into a cubital vein, the participants were
instructed to rest in a hospital bed for approximately
30 min before the baseline scans.
We aimed to initiate the scan sessions at the same time

of the day on all three study days for each participant,
allowing for a maximum time deviation of 1 h, to account
for metabolite concentration variations due to the circa-
dian rhythm [25, 26]. In addition, the timing of scan 1 and
scan 2 was fixed according to the baseline scan. The
1H-MRS sequences were part of a larger study (results of
these will be presented elsewhere). Before and after each
scan sequence it was ensured that participants remained
awake, and data were excluded in case they fell asleep dur-
ing the scans as this could affect the measurements [27].
Participants were instructed to remain still and avoid any
head motion during the scan sessions to ensure stable
measurements from the regions of interest.

Headache characteristics
Data on headache characteristics were acquired on each
study day, i.e. intensity, quality, aggravation by physical
activity, location and associated symptoms (nausea,
photophobia, and phonophobia). The headache intensity
was rated on a numeric rating scale ranging from 0 to
10, where ‘0’ translated to no headache and ‘10’ to the
worst imaginable headache. The headache data were ob-
tained between all scans. All participants were asked to
register headache hourly in a standardized questionnaire
after the last scan session until 24 h, starting from the
time of study drug administration.

Vital signs
The vital variables were registered and monitored at
baseline, and during the scan sessions after study drug
administration. Systolic and diastolic blood pressure
were measured with an interval of 10 min, and heart

rate, blood oxygen saturation and nostril end-tidal CO2

tension (water trap and gas sample line, Medrad, War-
rendale, PA) (Veris Monitor, Medrad, Warrendale, PA)
were monitored continuously.

Data acquisition and imaging protocol
All MRI scans were performed on a 3.0 T Philips Achieva
MRI scanner (Philips Medical Systems, Best, The
Netherlands) using a 32-channel phase array head coil.

Anatomical scan
High-resolution anatomical scans were obtained with a
3D T1-weighted turbo field echo sequence (field of view
240 × 240 × 170 mm3; voxel size 1.00 × 1.08 × 1.10 mm3;
echo time 3.7 ms; repetition time 8.0 ms; flip angle 8°).
The reconstruction software on the scanner was used to
additionally obtain the axial and coronal anatomical
views of the scan to ensure correct placement of the
volumes-of-interest (VOIs) for brainstem and thalamus.

Magnetic resonance spectroscopy
We used proton (1H) magnetic resonance spectroscopy
(MRS) to measure the combined concentration of glu-
tamate and glutamine (reported as ‘glutamate’), lactate,
N-Acetylaspartate (NAA) and the total concentration of
creatine i.e. phosphocreatine and creatine. The
water-suppressed point-resolved spectroscopy (PRESS)
pulse sequence was used in brainstem (repetition time
3000 ms; echo time 38.3 ms, voxel size 10.5 × 12.5 ×
22 mm3; 480 acquisitions; total duration 24 min) and
thalamus (repetition time 3000 ms; echo time 37.6 ms;
voxel size 16 mm × 12 mm × 12 mm; 192 acquisitions;
total duration 9 min 36 s). High number of acquisitions
was used to ensure sufficient signal-noise-ratio. Voxel
size based shimming was performed using first-order
pencil beam to reduce the inhomogeneity in the chosen
VOIs. The protocol was thus optimized to precisely tar-
get small VOIs in deep brain structures and to avoid
cerebrospinal fluid contributions and partial volume arti-
facts. The repetition time was 3000 ms to ensure suffi-
cient relaxation. The unsuppressed water signal was
measured from the VOIs and used as internal reference
for quantification [28]. The first VOI was placed unilat-
erally in the right side of the brainstem, and the second
VOI was placed in the left, contralateral thalamus, fol-
lowing the anatomical and functional trigeminal pain
pathways.

Metabolite quantification and analysis
Post-processing and quantification of the spectral data
were performed by LCModel (Version 6.3-1F, Toronto,
Canada). Representative 1H-MRS spectra obtained from
brainstem and thalamus are illustrated in Fig. 2. Spectra
were evaluated in a blinded manner and abnormal
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spectra were excluded. The quality of the included spec-
tra was estimated based on the signal-noise-ratio (SNR)
and full-width of half-maximum (FWHM) of the spectra
peaks as provided by LCModel. The means and standard
deviations of the SNR and FWHM for the brainstem
and thalamus spectra were calculated.

Statistical analysis
The primary endpoint was glutamate, lactate, NAA and
total creatine concentration changes in brainstem and

thalamus from baseline to after sildenafil and CGRP ad-
ministration, compared to the corresponding placebo
changes. A linear mixed model was used for each metab-
olite with interaction between scans (baseline, scan 1 and
scan 2) and drug days (sildenafil, CGRP and placebo) and
with subjects and study day (5 levels) nested within sub-
jects as random effects. The placebo day baseline scan was
set as the reference parameter in the model.
The secondary endpoint was changes in the metab-

olite concentrations in participants who developed
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Fig. 2 MR spectra from brainstem and thalamus. Examples of (a) brainstem and (b) thalamus spectra are obtained at baseline with the point-resolved
spectroscopy (PRESS) pulse sequence at 3.0 T. The spectra are acquired from LCModel. The red line represents the fit, and the horizontal linear line
represents the baseline as estimated by LCModel. Cho: Choline, Glu: Glutamate, tCr: Total creatine, NAA: N-Acetylaspartate
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pharmacologically induced headache during the scan
sessions after sildenafil and CGRP, compared to par-
ticipants who did not. A linear mixed model was used
for each metabolite on the sildenafil and CGRP day
with interaction between scans and headache and the
random effects: subjects and study day nested within
subjects. The data did not allow for correlation ana-
lyses between metabolite concentration and headache
characteristics. The headache frequencies after silden-
afil and CGRP were compared to placebo using
McNemar’s test.
For explorative vital parameter analyses, we included

data from the following time points: 0, 20, 70, 120, and
170 min after infusion. Changes from baseline after silden-
afil and CGRP were compared to placebo using a linear
mixed model with interaction between drug days and the
selected time points with subjects as random effects.
The variability structure of the glutamate measurements

in the brainstem and thalamus was estimated in an explora-
tive analysis based on baseline, scan 1, and scan 2 data ac-
quired on the placebo day, and baseline data acquired on
the sildenafil and CGRP day, using a linear mixed model
with no fixed effects, and the random effects: subjects and
study day (5 levels) nested within subjects.
All statistical analyses were performed using R (Ver-

sion 3.4.2). P values were reported as two-tailed with a
level of significance of 5%.

Results
Participants
Seventeen healthy volunteers participated in the study
(10 women and 7 men) with mean age 22.9 (SD ± 3.4
and range 18–30 years) (Fig. 3). Vitals signs are pre-
sented in Fig. 4.

Alterations in metabolite concentration
Brainstem
The glutamate concentration significantly increased
from baseline to scan 1 after sildenafil compared to the
corresponding change after placebo (P = 0.039) (Table 1,
Fig. 5). The lactate concentration decreased from base-
line to scan 1 (P = 0.017), but not to scan 2 (P = 0.156)
after sildenafil, compared to corresponding changes after
placebo. In the brainstem, we did not detect changes in
the metabolite concentrations from baseline to scan 1 or
scan 2 after CGRP, compared to placebo.

Thalamus
We did not detect changes in the glutamate, lactate or
NAA concentrations in the thalamus from baseline to
scan 1 or scan 2 after sildenafil or CGRP, compared to
placebo. The increase in the total creatine concentration
from baseline to scan 2 after CGRP (3.3%, P = 0.028) was
significant in comparison to placebo (P = 0.004).

Headache vs. no headache
The proportion of participants who developed headache
during scan 1 and scan 2, and after the scan sessions
and until 24 h from drug administration, is reported in
Fig. 6. We found no interaction in the glutamate, lactate,
NAA or total creatine concentrations in the brainstem
or thalamus between participants who developed silden-
afil- and/or CGRP-induced headaches as compared to
participants who did not.

Quality of spectra
The brainstem spectra had mean SNR of 17.56 (± 2.33),
and mean FWHM of 0.05 ppm (± 0.01) / 6.39 Hz (± 1.28).
In thalamus, the mean SNR was 15.30 (± 1.86) and the
mean FWHM was 0.04 ppm (± 0.01) / 5.11 Hz (± 1.28). In
addition, the Cramér–Rao lower bound was < 12% for glu-
tamate measurements in the brainstem and thalamus, ex-
cept for 12–13% in four brainstem spectra and one
thalamus spectrum in different subjects.

Glutamate variability in brainstem and thalamus
From the linear mixed model, we obtained separate
brainstem glutamate concentration variations, where
6.9% was due to residual measurement error with add-
itional 2.1% due to inter-subject variation, and 6.0% due
to between day variations. The thalamic glutamate con-
centration variations were 6.8% due to residual measure-
ment error with 2.7% inter-subject and 0% between day
variations.
The mean time difference from day 1 to day 2 of the

study days was 12.5 days (± 9.2) and 10.7 days (± 6.0) be-
tween day 2 and day 3. Participants were mainly scanned
from afternoon time on all three scan days. The scans
were initiated in the morning for three subjects, whereof
one subject completed all three study days.

Discussion
The major outcome of the present study was an increase
in the glutamate concentration in the brainstem after
administration of sildenafil when compared to placebo.
We did not detect any changes in the glutamate concen-
tration in the brainstem after CGRP infusion.

Sildenafil-induced biochemical changes
Glutamate, as the major excitatory neurotransmitter in the
brain, promotes neuronal depolarization [29]. Extracellular
glutamate levels are directly correlated to levels of neuronal
hyperexcitability and seizure intensity in animal models of
epilepsy [30, 31]. Here, we evaluated the combined concen-
tration of the glutamate and glutamine as these metabolites
are not differentiable at 3.0 T 1H-MRS. In healthy volun-
teers, the majority of the combined concentration consists
of glutamate (~ 80%) [32] and 13%–22% of the glutamate
concentration in the healthy brain is present in the
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extracellular space [29]. Most likely, the glutamate concen-
trations measured by 1H-MRS largely reflect the extracellu-
lar glutamate levels. In support of this, a 1H-MRS study
reported lower glutamate levels in amyotrophic lateral
sclerosis patients treated with riluzole, a drug that increases
glutamate uptake in central nervous system (CNS) neurons,
compared to riluzole-naive amyotrophic lateral sclerosis pa-
tients and healthy controls [16]. The transient
sildenafil-induced increase of glutamate in the brainstem in
the present study thus likely reflects increased extracellular
glutamate levels and possibly increased neuronal excitabil-
ity. In support, sildenafil is able to cross the blood-brain
barrier [23, 33] and some individuals report CNS side ef-
fects, such as dizziness and confusion [33–36]. Thus, sil-
denafil may be able to directly affect the neurons in deep
brain structures such as the brainstem. In contrast, a func-
tional MRI (fMRI) study of the visual cortex suggested that
oral sildenafil intake did not change the neuronal activation
threshold either at 1 or 2 h after administration [2]. The

plasma tmax of oral 100 mg sildenafil is about 1 h with a
close to 4 h half-life in the fasting state [36]. Here, we de-
tected an increased glutamate level at scan 1 (40–70 min
after sildenafil), around the time of tmax, but not at scan 2
(140–170 min after sildenafil). Possibly, plasma concentra-
tions of sildenafil above a certain level are needed to alter
the glutamate levels. Another possibility is that the transient
changes may be attributed to adaptation of sildenafil’s effect
at scan 2.
We detected no difference in the glutamate levels be-

tween groups of participants developing headache vs. no
headache. It should be noted that the participants were
healthy with no family history of migraine developing
merely a mild to moderate non-migraine headache after
the drug administration. Therefore, we speculate that a
“healthy” trigeminonociceptive system would not be suffi-
ciently activated to produce detectable changes in the glu-
tamate level. This may also explain the lack of changes in
the glutamate levels after CGRP as well as in the thalamus.

Contacted
n = 85

Not eligible
n = 65

Eligible 
n = 20

Withdrawal of 
consent/Lost to 

follow up
n = 3

Scanned
n = 17

Completed study days and excluded/missing data
All days: n = 12 missing: brainstem, CGRP, scan 1 (n = 1) 

brainstem & thalamus, placebo, scan 1 (n = 1)
excluded: brainstem, all scans (n = 1)

Placebo only: n = 2                        missing: brainstem & thalamus, scan 2 (n = 1)
Sildenafil and CGRP: n = 1              excluded: thalamus, sildenafil, all scans 
Sildenafil and placebo: n = 1
Sildenafil only: n = 1

Spectra included in final analyses

Days (subjects) Brainstem Thalamus

Sildenafil (n = 15):
CGRP (n = 13):

Placebo (n = 15):

13
11
12

13
13
13

Fig. 3 Flowchart of the inclusion process of participants and data for analyses. Seventeen participants were scanned, whereof 12 completed all
three study days. The remaining participants completed 1–2 study days. One subject completed only the placebo day due to loss to follow up.
One subject withdrew after scan 1 on the first study day (placebo) due to claustrophobia, thus scan 2 data are missing. One subject completed
the sildenafil and CGRP day, but thalamus data were excluded from the sildenafil day as the subject fell asleep during the thalamus baseline scan.
One subject did not complete the CGRP day due to loss to follow up. One subject only participated on the sildenafil day due to finalization of
the study. Data were further missing due to technical issues: scan 1 data (brainstem and thalamus) after placebo from one subject, and scan 1
brainstem data after CGRP from another subject. Brainstem data were excluded from one subject for all three study days due to poor spectral
quality. n: Number
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Given the transient glutamate changes and lack of correl-
ation to headache status, it is likely that the observed
changes are related to the pharmacological effects of the
drug rather than the headache per se.
The lactate concentration was decreased in the brainstem

at scan 1 after sildenafil compared to the corresponding
placebo change. This observation is very interesting since
brain lactate levels under normal conditions increase

during neuronal activation [37]. Therefore, we would ex-
pect the brainstem lactate levels to increase following sil-
denafil administration, along with the observed increase in
glutamate. A possible explanation could be that the lactate
decrease reflects a neuronal energy consumption via con-
version to pyruvate [38]. The lactate concentration finding
in the present study should be interpreted with caution due
to the relatively large standard deviations. Also of note, the

Fig. 4 Mean arterial pressure, heart rate and end-tidal CO2 tension after sildenafil, CGRP and placebo. The mean arterial pressure, heart rate and
end-tidal CO2 tension were normal on all three study days
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lactate concentration is very low in the healthy brain (below
1.0 mmol/L) [39]. This contributes to the risk of lactate sig-
nal loss in the spectrum due to chemical shift displacement
or J-modulations deviations during the MRS measure-
ments, which are known issues [39].

CGRP-induced biochemical changes
We detected no alterations in the glutamate levels after
CGRP infusion in either brainstem or thalamus in healthy
participants. This suggests that CGRP does not modify the
neuronal excitability in these key CNS structures involved
in pain processing in healthy subjects. The blood-brain bar-
rier is believed to have no permeability to CGRP [4, 40],

and thus little or no direct effects on central brain regions,
which our findings support.
In line with previous reports [3, 4], we found that par-

ticipants developed more headache after CGRP, com-
pared to placebo, demonstrating that CGRP is able to
activate the trigeminal pain pathway. Given that systemic
CGRP is unlikely to cross the blood-brain barrier, the
present findings support the notion that CGRP acts on
perivascular afferents [22] or the trigeminal ganglion
[21, 41]. Interestingly, an fMRI study reported no change
in the neuronal activation of the visual cortex of healthy
volunteers after CGRP infusion [42]. Increased neuronal
response to visual stimulation has previously been

Table 1 Summary of metabolite concentrations in brainstem after sildenafil, CGRP and placebo

Baseline Scan 1 Scan 2

Mean mmol/L SD Mean mmol/L SD % change from baseline P Mean mmol/L SD % change from baseline P

Glutamate

Sildenafil 7.77 0.65 8.21 0.53 5.6 0.039* 8.06 0.77 3.7 0.101

CGRP 7.92 1.11 7.49 0.88 −5.4 0.639 8.08 0.73 −2.0 0.228

Placebo 7.96 0.50 7.72 0.61 −3.0 – 7.70 0.65 −3.3 –

Lactate

Sildenafil 0.90 0.21 0.45 0.41 −50.0 0.017* 0.43 0.33 − 51.9 0.156

CGRP 0.71 0.51 0.49 0.44 −30.9 0.151 0.42 0.41 −40.6 0.494

Placebo 0.75 0.65 0.89 0.68 21.6 – 0.62 0.42 −15.6 –

NAA

Sildenafil 7.73 0.79 7.93 0.79 2.8 0.236 7.95 0.69 3.0 0.370

CGRP 7.58 0.72 7.56 0.68 −0.2 0.821 8.06 0.82 6.3 0.127

Placebo 7.61 0.63 7.64 0.58 0.4 – 7.73 0.72 1.6 –

Total creatine

Sildenafil 4.25 0.35 4.33 0.32 1.0 0.978 4.23 0.28 −0.3 0.735

CGRP 4.38 0.38 4.39 0.53 0.03 0.562 4.50 0.33 2.7 0.170

Placebo 4.24 0.33 4.33 0.47 2.0 – 4.21 0.32 −0.7 –

*P<0.05. P values reported for delta change from baseline to scan 1 and 2 after sildenafil and CGRP, compared to the corresponding change from baseline after placebo
NAA N-Acetylaspartate, SD standard deviation

Fig. 5 Mean glutamate changes after sildenafil, CGRP and placebo in brainstem . * P < 0.05, when compared to placebo
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shown to be correlated with an increase in the glutamate
levels [43, 44]. Another fMRI study involving application
of heat pain to the forehead of healthy volunteers re-
ported altered blood-oxygenation-level-dependent signal
40 min after administration of CGRP in pain associated
brain regions, including the brainstem and thalamus,
with no changes during placebo [45]. This observation
suggests that CGRP may be capable of modulating the
neuronal response indirectly (i.e. outside the CNS) given
that the pain pathway is already activated [45].

Reliability of glutamate measurements
With our 1H-MRS protocol, we obtained high quality
spectra from the brainstem and thalamus with narrow line
widths and relatively high SNR allowing for reliable quan-
tification. A previous 3.0 T 1H-MRS study measured glu-
tamate changes in the brainstem without reporting the
SNR or spectral line widths, but visual inspection of the
brainstem spectrum reveals more noise compared to the
brainstem spectra obtained in the present study [16].
Other 1H-MRS brainstem studies reported relatively wider
mean line widths of 8.1 Hz (± 0.9) [18], and 10.04 Hz (±
4.64) [17] at 3.0 T, and 7 Hz at 4.0 T [19] indicating spec-
tra of lower quality. One of the studies reported the SNR
as well, which was relatively high, 21(± 3), most likely due
to the larger VOI used in the study [18]. None of the stud-
ies reported glutamate findings and the VOIs were larger
than in the present study [17–19]. While large VOIs can
improve the spectral quality, it also restricts the possibility
of targeting a brain area with precision.
A previous 3.0 T 1H-MRS study of thalamus used a

larger VOI with fewer acquisitions, and reported a mean

line width similar to the present study findings, but did
not report the SNR value for comparison [17]. One
1.5 T 1H-MRS thalamus study reported reduced mean
line width of 3.2 Hz (± 0.5), however, the SNR of 3.9 (±
1.2) was much lower [46].
The brainstem 1H-MRS spectra reveal a different me-

tabolite composition compared to the conventional
spectra obtained from e.g. the thalamus and occipital
lope, as the choline peak is higher than the total creatine
peak (Fig. 2), which is commonly reported [16, 17, 19].
To our knowledge, our study is the first 1H-MRS study

to provide information on the variability of glutamate
levels in both brainstem and thalamus, based on re-
peated measurements, on the same day and on three
separate days. In the present study, the overall variability
of the glutamate measurements was low. For compari-
son, a previous 3.0 T 1H-MRS study reported a higher
inter-subject glutamate variability of 15.4%–16.3% in the
deep brain area of the amygdala, based on two scans ob-
tained 1 week apart [47]. Another 3.0 T 1H-MRS study
of repeated measurements on three consecutive days re-
ported residual measurement error as the main con-
tributor to the glutamate variability in a small
hippocampus VOI [48]. Finally, one previous 7.0 T
1H-MRS study reported higher glutamate variability of
11.48% (± 8.87) within day (based on two scans), and
6.56% (± 4.69) between day, measured in the visual cor-
tical area of healthy subjects [49]. However, the study
did not report a separate inter-subject and residual
measurement error variability [49].
The present study has several major strengths to ac-

count for the measurement error variation, as all

Fig. 6 Proportion of healthy participants who developed headache after sildenafil, CGRP and placebo. Blue, green and dark grey bars indicate
headache. Light grey bars indicate no headache. During the scan sessions (0–4 h), 8 of 13 participants (62%) developed headache after CGRP (P
= 0.041, compared to placebo), 8 of 15 (53%) developed headache after sildenafil (P = 0.131, compared to placebo), and 2 of 13 (13%) developed
headache after placebo.

Younis et al. The Journal of Headache and Pain  (2018) 19:44 Page 9 of 11



participants were scanned at fixed time points on each
scan day, accounting for possible changes due to the
metabolic circadian rhythm [25, 26]. In addition, we
maintained identical and stable study conditions for all
participants on all three study days, including detailed
dietary restrictions before and during the scan sessions.
All participants were carefully instructed to avoid any
head motion during the scans. However, we cannot ex-
clude the possibility of motion affecting our findings
during the scan sessions. We estimated that the high ac-
quisition number for the 1H-MRS sequences was appro-
priate and feasible to obtain a sufficient signal noise
ratio from the spectral VOIs. Additionally, as our pri-
mary aim was to investigate and compare relative
changes from baseline within subjects, these issues were
unlikely to affect our results.

Conclusion
Here we present a protocol for pharmacological
1H-MRS at 3.0 T in the brainstem and thalamus, with
good spectral quality, and overall low measurement vari-
ability. We demonstrated that sildenafil induces transi-
ently increased glutamate levels in the brainstem, which
suggest transiently increased excitability of the brainstem
neurons. CGRP does not induce glutamate changes in
the brainstem or thalamic neurons, suggesting that its
headache-inducing effects are not mediated by biochem-
ical changes in deep brain structures, but rather its ef-
fects on the peripheral trigeminal pain pathways.
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