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Abstract

The trigeminovascular system plays a key role in the pathophysiology of migraine. The activation of the trigeminovascular
system causes release of various neurotransmitters and neuropeptides, including serotonin and calcitonin gene-related
peptide (CGRP), which modulate pain transmission and vascular tone. Thirty years after discovery of agonists for serotonin
5-HT1B and 5-HT1D receptors (triptans) and less than fifteen after the proof of concept of the gepant class of CGRP
receptor antagonists, we are still a long way from understanding their precise site and mode of action in migraine. The
effect on cranial vasculature is relevant, because all specific anti-migraine drugs and migraine pharmacological triggers
may act in perivascular space. This review reports the effects of triptans and CGRP blocking molecules on cranial
vasculature in humans, focusing on their specific relevance to migraine treatment.
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Keypoints
Triptans constrict extracerebral, but no intracerebral ar-
teries, in healthy volunteers and migraine patients. The
vasoconstrictor action of sumatriptan on extracerebral
arteries could be relevant to relief migraine pain. How-
ever, sumatriptan also inhibits perivascular neurogenic
inflammation and sensitization in animal models.
Gepants prevent CGRP-induced dilation of extracerebral

arteries (e.g. middle meningeal and temporal arteries) in ex-
perimental human models.
Data on effect of anti-CGRP (receptor) monoclonal anti-

bodies on cranial vasculature is still lacking. Importantly, pre-
clinical models show their ability to inhibit CGRP-induced
neurogenic vasodilation of the middle meningeal artery.

Background
Over the last century, controversies have raised around
the vascular, neural or neurovascular origin of migraine
[1]. From Galen original conjecture [2], with a meningeal

involvement in the throbbing pain, several centuries
passed before Willis, in 1672, hinted for the first time at
a “vascular hypothesis” of migraine [3]. Throughout the
1930s and early 1940s headache science has emerged
from studies by Graham, Ray and Wolff, who reported
head pain after in vivo stimulation of dural and cerebral
arteries, hypothesizing perivascular space as the possible
site of migraine pain [4–7]. Pial, dural and extracranial
vessels are part of a trigeminovascular system, a func-
tional pathway that, on one side, releases vasoactive
neuropeptides from perivascular nerve fibers and, on the
other, reacts to them with nociception and vasodilation
[8]. Pursuing the vascular hypothesis, several pharmaco-
logical triggers (such as glyceryl trinitrate (GTN),
calcitonin gene-related peptide (CGRP) and pituitary
adenylate cyclase-activating peptide (PACAP-38) were
found to induce attacks phenotypically indistinguishable
from spontaneous migraine in migraine patients [9–11].
The fact that all migraine-provoking molecules are vaso-
active and sumatriptan constricts arteries [12, 13],
further granted a key role of cranial vasculature in
migraine pathophysiology [14].
Cranial arteries dilation has been shown, with different

techniques, in both provocation and spontaneous
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migraine studies. Since the early 1990s, ultrasonography
has been used to measure blood flow velocity in intra-
cranial arteries [15] and extracranial artery diameter [16]
during migraine attacks. Blood flow velocity correlates
to vessel autoregulation and reactivity. Moreover, if cere-
bral blood flow does not change during an attack, blood
flow velocity may be a surrogate marker of artery diam-
eter (i.e. decreased blood flow velocity means increased
middle cerebral artery lumen) [17]. In the last decade,
investigation techniques have moved from ultrasonog-
raphy to magnetic resonance angiography (MRA), allow-
ing researchers to directly measure artery circumference
[18–22]. MRA studies reported modest artery dilation
during attacks, which was inhibited by triptans [12, 18,
21, 23]. Similar results, with prevention of superficial
temporal artery dilation, were reported with the CGRP
receptor antagonist olcegepant [24], hence suggesting
that the modulation of cranial vasculature tone or
perivascular nociception is of paramount importance in
migraine treatment, too.
Despite above mentioned evidence, the heated de-

bate about the role of cranial vasculature in migraine
pathophysiology is still open, and some authors have
questioned whether cranial arteries play a significant
role or only represent a negligible epiphenomenon
[25, 26]. Even though the precise site where migraine
origins still remains elusive, consistent evidence
suggests that initial mechanisms may dilate intra- and
extra-cerebral arteries, and cranial vasoconstriction
may mediate at least a part of the effects of anti-
migraine abortive drugs [8]. Thus, considering treat-
ments on the verge of entering the clinical practice,
such as CGRP blocking molecules, cranial arteries are
undoubtedly of major interest in migraine.
This review reports the effects of triptans and CGRP

(receptor) blocking molecules on cranial vasculature in
humans, focusing on their specific relevance to migraine
treatment. The classification of cranial vessels as intra-
cranial – intracerebral and extracerebral – and extracra-
nial, is shown in Table 1.

Triptans
The development and consequent introduction of trip-
tans represented an unprecedented revolution in
migraine history, being the first successful attempt of ra-
tional and mechanism-driven treatment of migraine
attacks. Compared to ergot alkaloids (ergotamine, dihy-
droergotamine and methysergide), that are non-specific
serotonin type 1 (5-HT1) receptor agonists as they target
also 5-HT2, adrenergic and dopaminergic receptors,
triptans act as selective agonists at 5-HT1B and 5-HT1D

subtypes, displaying a more favourable risk profile to
ergots [27, 28].
The rationale for triptans development has been based

on the vascular theory of migraine, together with the hy-
pothesis that serotonin and serotonin receptors are in-
volved in migraine pathophysiology. It has been shown
that during a migraine attack high levels of hydroxyindo-
leacetic acid, a serotonin metabolite, are excreted [29]
and that monoamine depletors induce migraine attacks
that are aborted by intravenous infusion of serotonin
[30]. To develop selective cranial vasoconstrictors and to
avoid risky side effects of ergot alkaloids (i.e. a marked
and long-lasting vasoconstriction in peripheral vessels),
Humphrey and colleagues identified the 5-HT1-like re-
ceptor, later discovered to consist of both the 5-HT1B
and the 5-HT1D receptor subtypes, mostly located in
cranial vessels, and then developed the first triptan,
known as sumatriptan (GR43175) [31, 32]. Because of its
efficacy and safety (including cardiovascular safety),
sumatriptan has become a landmark in the treatment of
migraine attacks [33]. Nevertheless, some peculiarities,
such as the low oral bioavailability and short half-life
[34], have favoured the development of new molecules,
the so-called “second-generation” triptans (almotriptan,
eletriptan, frovatriptan, naratriptan, rizatriptan), with an
optimization of the pharmacokinetic profile [35].
Triptans are 5-HT1B/1D receptor agonists, most of

them showing a moderate to high affinity for 5-HT1F re-
ceptors as well [35]. Immunohistochemical studies have
shown that 5-HT1B receptors are mainly located within
the smooth muscle and in the endothelium of human
middle meningeal [36, 37] and cerebral [38] arteries. Im-
portantly, in in vitro studies, triptans constrict these ar-
teries [37–39]. The 5-HT1B receptors, together with the
5-HT1D and 5-HT1F receptors, are also located within
the trigeminal nerve endings and trigeminal nucleus,
suggesting that their stimulation could inhibit the release
of proinflammatory neuropeptides (e.g. CGRP) and, con-
sequently, the nociceptive transmission [40]. In a ran-
domized placebo-controlled study, the administration of
PNU142633, a selective 5-HT1D receptor agonist, failed to
alleviate the pain of acute migraine, suggesting a secondary
role for 5-HT1D [41]. On the other side, selective non-
vasoconstrictive 5-HT1F receptor agonists, LY334370 [42]

Table 1 Intracranial intracerebral and extracerebral and
extracranial vessels

Cranial vessels may be extracranial and intracranial, and these latter may be
distinguished into intracerebral and extracerebral. The middle cerebral artery
and the cerebral part of the internal carotid artery are intracerebral vessels,
while the cavernous part of the internal carotid artery is extracerebral. On the
other hand, according to current imaging detection limitations, both the
middle meningeal artery and the superficial temporal artery are considered
extracranial vessels. Importantly, the middle meningeal artery has an
intracranial and heavily innervated portion that may even be of more
relevance in the pathophysiology of migraine than the extracranial portion.
However, throughout the text and in accordance with current evidence
that are about the extracranial portion, the text refers to middle meningeal
artery as to an extracranial vessel.
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and LY573144 (i.e. lasmiditan) [43] demonstrated clinical
efficacy, even though it remains to be confirmed whether
these molecules, at therapeutic concentrations, are devoid
of any activity on 5-HT1B receptors. Interestingly, lasmidi-
tan did not exer vasoactive effects in supratherapeutic con-
centrations [44]. Importantly, the high cranial (i.e. middle
meningeal artery) 5-HT1B receptor density compared to
peripheral (i.e. coronary artery) blood vessels probably ren-
ders the triptans relatively selective for producing cranial
vasoconstriction [36, 45].
Human experimental data about vessel responses to

triptans (Fig. 1) have refined our comprehension of
triptan antimigraine effects and, indirectly, of the mi-
graine mechanism. Differently from what observed in
vitro and in vivo [46], a placebo-controlled single-
photon emission computed tomography (SPECT) study
on healthy volunteers showed that sumatriptan infusion
did not modify total and regional cerebral perfusion [47].
Interestingly, contrasting data in migraine patients
have been initially reported about the correspondence
between sumatriptan-related blood velocity modifica-
tions, measured by Doppler sonography, and the
resolution of migraine attacks [12, 48, 49]. Import-
antly, combining the measurement of the regional
cerebral blood flow and the blood velocity in the
middle cerebral arteries, sumatriptan infusion has
been shown to reverse the abnormal dilation of the
middle cerebral artery in the headache side [12]. This
finding suggests that the sumatriptan-induced vasocon-
striction occurs only in the dilated vessels, without affect-
ing normal ones.

Triptans and cranial vasculature
A key feature of migraine is that attacks can be provoked
by pharmacological triggers, including GTN [50] and, as
detailed below, the provocation migraine models have
provided important data on the role of cranial vascula-
ture in migraine.
The efficacy of triptans in GTN-induced headache was

investigated in healthy volunteers in double-blind,
placebo-controlled, crossover studies. Sumatriptan (6 mg)
administered subcutaneously 20 min before GTN
(0.12 μg/kg/min) infusion, relieved pain and decreased
temporal artery diameter without affecting blood velocity
of middle cerebral artery (MCA) [51]. On the other hand,
zolmitriptan (5 mg), administered orally during ongoing
GTN infusion (0.2 μg/kg/min) had no effects on the
induced-headache [52]. Oral triptans (rizatriptan 10 mg,
sumatriptan 50 mg and zolmitriptan 2.5 mg) were also
tested in migraine patients, in which they have been
shown to both decrease diameter and increase resistance
of temporal artery, although to a different extent [53].
More recently, the triptan effect was examined after the
experimental administration of vasoactive neuropeptides
such as CGRP, PACAP-38 and VIP, in healthy volunteers
and migraine patients. In a first study, 18 healthy volun-
teers were randomized to receive an intravenous infusion
of human α-CGRP (1.5 μg/min) or placebo, for 20 min
[18]. After 45 min, a single dose of subcutaneous suma-
triptan (6 mg) was administered to each patient. A high-
resolution MRA was performed at baseline, before and
after the sumatriptan injection, to measure the changes in
the circumference of the MCA and middle meningeal

Fig. 1 Effects of sumatriptan and olcegepant on cranial vessels in migraine patients. The intracerebral vessels, the middle cerebral artery (MCA) and
the cerebral part of the internal carotid artery (ICAcerebral), are both shown in yellow. The extracerebral artery, the cavernous part of the internal carotid
artery (ICAcavernous), is shown in blue. The extracranial vessels, the middle meningeal artery (MMA) and the superficial temporal artery (STA), are both shown in
purple. Boxes include description of vessel reactivity during spontaneous and/or CGRP induced attacks as well as vessel response to sumatriptan and/or
olcegepant. Imaging modality indicated in parentheses in boxes; magnetic resonance angiography (MRA) or transcranial ultrasound Doppler (Doppler). Image
from MRA of healthy volunteer kindly provided by Faisal M Amin
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artery (MMA). Compared to placebo, CGRP caused sig-
nificant dilation of MMA but not of MCA, and sumatrip-
tan reduced the MMA circumference after CGRP
pre-treatment by 25% and to a lesser extent on MCA, sug-
gesting that sumatriptan exerts part of its antinociceptive
effect primarily acting on MMA. A second study was per-
formed in 24 patients with migraine without aura [23], in
which the CGRP intravenous infusion always resulted in a
delayed headache, which fulfilled the criteria for migraine-
like attacks in 18 patients (75%). MRA was performed in
15 of 18 patients, and of these, 10 (67%) patients reported
unilateral head pain. MMA and MCA were dilated only
on the painful side. The other 5 patients (33%) reported
bilateral head pain, accompanied by a bilateral dilatation
of both MMA and MCA. Sumatriptan subcutaneous in-
jection reversed the dilatation of MMA and aborted the
migraine attacks, without affecting MCA circumference
[23]. These data show that migraine is associated with
dilatation of extracerebral and intracerebral arteries, but
only the contraction of extracerebral arteries is associated
with amelioration of headache.
PACAP-38 is a vasoactive neuropeptide that belongs

to the secretin/glucagon/VIP family and it is used to
provoke experimental headache and migraine [10].
PACAP-38 is reported to cause delayed headache in
healthy volunteers, associated with a significant and
long-lasting dilatation of the MMA (up to 23%), but no
change in the MCA circumference [19]. In comparison,
sumatriptan induced a contraction of the MMA by
12.3% and reversed the delayed headache attack, but no
effects on the MCA were observed. The role of PACAP-
38 was further investigated in a double-blind crossover
study [22] conducted in 22 female migraine patients
without aura. Sixteen patients (73%) after PACAP-38 in-
fusion, but only four patients (18%) after VIP infusion
(8 pmol/kg/min), reported migraine-like attacks. Both
peptides induced a marked dilatation of the extracranial
arteries, but not of the intracranial arteries. The subcuta-
neous injection of sumatriptan reversed migraine attacks
simultaneously to the constriction of the dilated
extracerebral arteries, but not the intracerebral arteries.
To date, only one MRA study has explicitly investi-

gated cranial arteries during spontaneous migraine at-
tacks [20]. Migraine attacks, with a median time from
pain onset to scan of 5 h 45 min, are not accompanied
by extracranial arterial dilation on the pain side, but only
by slight dilation of intracerebral arteries, MCA and in-
ternal carotid (ICA). In addition, the dilatation of the
intracerebral arteries persisted after subcutaneous in-
jection of sumatriptan, which however relieved mi-
graine pain and reduced the circumference of not-
dilated extracranial arteries. These data suggested that
the vasoconstrictor action of sumatriptan evident in
extracranial arteries and in the cavernous portion of

the ICA could be relevant to relief migraine. How-
ever, these findings do not refuse possible nociceptive
input from other extracranial structures, in the ab-
sence of dilatation, such as CGRP-releasing sensitized
perivascular afferents. Interestingly, recent data in
humans suggested that the decrease of capsaicin-
induced dermal blood flow may be mediated by the
inhibition of CGRP release [54].

CGRP and cranial vasculature
CGRP is a potent vasodilator expressed and released in the
perivascular space by trigeminal sensory neurons with a
central role in neurogenic inflammation [55]. CGRP recep-
tor consists of three components: calcitonin-receptor-like
receptor (CLR), receptor component protein (RCP) and a
specific chaperone called receptor activity modifying pro-
tein 1 (RAMP1) [56]. Importantly, CLR and RAMP1 ex-
pression has been shown in human middle meningeal [57],
middle cerebral, pial and superficial temporal arteries [58],
demonstrating the presence of all essential components
required for a functional CGRP receptor in these districts.
Several small molecule antagonists targeting the CGRP

receptor have been developed [59] for the treatment of
acute migraine attack and have shown efficacy in clinical
trials. Olcegepant (BIBN4096BS) was the first selective
and hydrophilic non-peptide CGRP receptor antagonist
with an extremely high affinity and specificity for the
human CGRP receptor [60] showing clinical efficacy in
migraine attacks [61]. In comparison to triptans, which
have been extensively studied in humans, most data on
vascular effects of “gepants” come from preclinical
studies and this has been previously reviewed [62].
Olcegepant, which inhibits dose-dependent relaxation of
isolated human cerebral arteries [63], blocks MMA vaso-
dilation following systemic administration of α-CGRP
and β-CGRP, without significantly affecting pial artery
dilation or the local cortical cerebral blood flow increase
[64]. In contrast to the pial vessels, the meningeal arter-
ies have no blood-brain barrier [65], suggesting that
olcegepant likely acts outside of the blood-brain barrier
[66]. In humans, olcegepant per se had no constrictor ef-
fect on the middle cerebral, radial, and superficial
temporal artery [24], and no influence on global and re-
gional cerebral blood flow [67]. Nevertheless, olcegepant
effectively antagonizes the extracerebral vascular effect
(e.g. temporal artery dilation) induced by CGRP intra-
vascular administration [24]. A series of orally bioavail-
able small molecule CGRP receptor antagonists,
including MK-0974 (telcagepant), have been then devel-
oped giving rise to the pharmacological class of
“gepants”. Telcagepant has been shown to be able to
abort CGRP-induced vasodilatation on human cerebral
and meningeal arteries ex vivo [68]. However, notwith-
standing efficacy in clinical trials [69], clinical development
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of early gepants has been discontinued [70], and ac-
cordingly their use in migraine models has been
withdrawn.
There are currently four monoclonal antibodies (mAb)

in clinical development for migraine prophylaxis: three
humanized mAb targeting CGRP (LY2951742/galcane-
zumab, Eli Lilly and Company; ALD403/eptinezumab,
Alder Biopharmaceuticals; and TEV-48215/fremanezu-
mab, TEVA Pharmaceuticals) and one fully human mAb
targeting the CGRP receptor (AMG 334/erenumab,
Amgen). These biological drugs have shown efficacy,
tolerability and few adverse effects in phase 2 random-
ized control trials [71–76]. However, their exact site and
mechanism of action is not completely understood. The
new CGRP mAbs are macromolecules (around
150,000 Da) that are unlikely to cross the blood-brain
barrier [66]. In line with this, few preclinical studies re-
vealed that humanized CGRP mAb are (i) unable to
penetrate the blood-brain barrier in the perfused MCA
[77]; (ii) ineffective in inhibiting the responses to CGRP-
induced neurogenic vasodilation of the pial artery [78];
and (iii) capable of inhibiting CGRP-induced neurogenic
vasodilation of the MMA, which as mentioned above
lacks blood-brain barrier [65, 79]. Importantly, it has
been recently shown that there is no blood-brain barrier
disruption during migraine attacks [80]. All these find-
ings taken into account suggest a peripheral vascular site
of action of the mAbs.
A similar alternative under development for the pre-

ventive treatment of migraine is blocking CGRP-induced
receptor activation through a RNA-Spiegelmer (NOX-
C89). This single-strand mirror-image oligonucleotide
binds to circulating CGRP and is highly resistant to en-
dogenous nuclease degradation, hence inhibiting its
function. Interestingly, this drug could not inhibit neuro-
genic vasodilation of pial arteries in vivo, which sug-
gested that it is unlikely to penetrate the blood-brain
barrier readily [78].
Targeting peripheral CGRP may reduce or prevent the

phenomenon (i.e. vasodilation) that has been advocated
as a mechanism of headache and associated symptoms,
whereas whether long-term inhibition of CGRP outside
of the blood-brain barrier induces modulation of central
pathways remains unknown. Further studies are needed
to fully clarify the exact antimigraine site of action of the
CGRP mAbs and NOX-C89.

Conclusions
From Galen’s quote about meninges and vessels as medi-
ators, together with other structures and mechanisms of
migraine pain, long time has passed. In the last years,
notwithstanding many detractors, cranial vasculature
involvement in the pathogenesis of migraine pain has
benefited from experimental data acquired by modern

imaging techniques, such as MRA, and specific pharma-
cological tools, such as triptans. Recently developed
human migraine models have suggested that attention
should be paid to cranial extracerebral arteries (i.e.
MMA) in addition to intracerebral vessels, which were
the major focus at the dawn of vascular migraine re-
search. On the basis of current knowledge [20, 23],
future studies should investigate whether there are
differences in how the perivascular nerves innervate the
different sections of the MMA, including dural branches,
because it is likely that it is activation or inhibition of the
perivascular nerves that is associated with migraine pain
relief. In addition, future advanced brain imaging methods
will allow to investigate possible dilatation of dural
branches of the MMA that are very difficult to visualise
with current method, without injection of contrast agents
[20]. The availability of innovative migraine-specific drugs,
such as CGRP-targeted compounds [69], will further
increase our ability to investigate the involvement of
cranial vasculature in migraine pain, and will finally allow
to properly balance the weight of vessel contribution to
the neurovascular theory of migraine.
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