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Abstract

Background: To review the distribution and function of KATP channels, describe the use of KATP channels openers
in clinical trials and make the case that these channels may play a role in headache and migraine.

Discussion: KATP channels are widely present in the trigeminovascular system and play an important role in the
regulation of tone in cerebral and meningeal arteries. Clinical trials using synthetic KATP channel openers report
headache as a prevalent-side effect in non-migraine sufferers, indicating that KATP channel opening may cause
headache, possibly due to vascular mechanisms. Whether KATP channel openers can provoke migraine in migraine
sufferers is not known.

Conclusion: We suggest that KATP channels may play an important role in migraine pathogenesis and could be a
potential novel therapeutic anti-migraine target.
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Introduction
Adenosine 5′-triphosphate-sensitive K+ (KATP) channel
openers have been used in clinical trials for the treatment
of hypertension and asthma. The most common side ef-
fect mentioned during treatment with KATP channel
openers was headache (62, 64, 66–79) (Tables 2 and 3).
However, only little attention has been focused on the role
of KATP channels in migraine pathophysiology.
KATP channels were originally identified in cardiomyo-

cytes [1], but have also been found in several tissues, in-
cluding pancreatic α- and ß-cells, smooth muscle,
skeletal muscle and central neurons [2, 3]. The channels
belong to the family of inwardly rectifying K+ channels
that are inhibited at physiological intracellular levels
ATP/ADP ratio. When intracellular ATP is reduced
under conditions of metabolic challenges they open.
KATP channels are critical in regulating insulin secretion,

controlling vascular tone, and protecting cells against
metabolic stress [2, 4, 5].
Over the past three decades, some preclinical evi-

dence has emerged indicating that KATP channels may
play an important role in migraine pathophysiology.
In particular, the vasodilation effect of KATP channels
is relevant, since it is has been established that
endogenous neurotransmitters that trigger migraine
attacks are often associated with dilation of cranial
arteries [6].
Here we review preclinical and clinical studies on

KATP channels and discuss the KATP channel as a novel
therapeutic target for migraine treatment.

Molecular structure and isoforms
The KATP channel is a hetero-octameric complex that
consists of four pore-forming K+ inwardly rectifying
(Kir) subunits and four regulatory sulfonylurea receptor
(SUR) subunits [7].
The Kir6.x subunit exists in two isoforms, Kir6.1 and

Kir6.2. The SUR subunit belongs to the ATP-binding
cassette (ABC) transporter family, regulated by
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sulfonylurea, with three isoforms, SUR1, SUR2A, and
SUR2B [7, 8].
KATPchannels have specific tissue expression with

different compositions of Kir6.x and SUR subunits
which lead to distinct functional properties (Figs. 1
and 2 and Table 1).

Channel function
KATP channel activity is controlled by changes in
concentrations of intracellular ATP and magnesium ad-
enosine diphosphate (Mg-ADP). KATP channels couple
the metabolic state of the cell to the membrane potential
and thus play a crucial role in many tissues under both

Fig. 1 Molecular structure and isoforms. a Two major Kir6.x isoforms (Kir6.1 and Kir 6.2) and three major SUR isoforms (SUR1, SUR2A and
SUR 2B) have been identified. b Kir.x subunits combine tissue-specifically with different SUR subunits to form various native KATP channels.
Pancreatic, cardiac and smooth muscle KATP channels are made up of Kir6.2/SUR1, Kir6.2/SUR2A and Kir6.1 (or Kir6.2)/SUR2B, respectively
[2]. Kir, inwardly rectifying K+ channels; SUR, sulfonylurea receptor
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physiological and pathological conditions [9]. K+ chan-
nels participate in the regulation of vascular tone, in-
cluding cerebral arteries [10]. When intracellular ATP is
reduced, KATP channels become activated; K+ efflux hy-
perpolarize the membrane and close voltage-operated
Ca2+-channels (VOCC). The result is a decrease in cyto-
solic Ca2+ concentration followed by relaxation of vascu-
lar smooth muscle cells and an increase in blood flow
[11]. The same applies if cells are exposed to metabolic
stress such as ischemia or hypoglycemia [12]. Closure of
K+ channels leads to membrane depolarization and con-
striction of the vessels [11]. In addition an increase in
intracellular cAMP and cGMP levels activate KATP chan-
nels to produce vasodilation [11]. Synthetic KATP chan-
nel openers (like levcromakalim and cromakalim) and

blockers (like glibenclamide, second generation of sulfo-
nylurea and PNU37883A) directly activate or inhibit the
vascular KATP channels, respectively [9] (Fig. 3).

Distribution of KATP channels in migraine related
structures
Intracranial arteries
KATP channels are present and functional in intracranial
arteries [13–15]. They are found in vascular smooth
muscle cells and vascular endothelial cells [16, 17]. In
rat cerebral arteries, the distribution of KATP channels
varies with vessel size and brain region [18]. Real time
polymerase chain reaction (RT-PCR) analysis revealed
Kir6.1 and SUR2B subunits in middle meningeal artery
(MMA) and middle cerebral artery (MCA) in rats and
pigs [19, 20]. This profile of KATP channels is also identi-
fied in human MMA [21] (Table 1).

Trigeminal ganglion and trigeminal nucleus caudalis
Kir6.1, Kir6.2, SUR1 and SUR2 are expressed in the tri-
geminal ganglion and trigeminal nucleus caudalis [22]
(Table 1). In trigeminal neurons Kir 6.1 and Kir 6.2 immu-
noreactivity were expressed in cells with all soma sizes in
all three divisions of the trigeminal ganglion [23].

KATP channels openers and migraine signaling
pathways
A number of endogenous vasoactive signaling molecules
have been implicated in migraine [6], and KATP channels
may interact with these molecules.

Fig. 2 Schematic diagram of the KATP channel. Kir6.x subunits have two transmembrane domains, and a large cytoplasmic domain including an
inhibitory binding site for ATP [8, 84]. SUR subunits have many transmembrane domains and two intracellular nucleotide binding domains (NBD1
and NBD2), which stimulate opening of the channel after binding to MgADP [85]

Table 1 Distribution of KATP channels

Subtypes of KATP
channels

Tissue
expression

Migraine related structures

Kir6.2/SUR1 Pancreas and
brain

DRG, TG and TNC from rats
(20–24, 26).

Kir6.2/SUR2A Cardiac and
skeletal muscle

Kir6.2/SUR2B Smooth
muscle

DRG, TG, TNC, BA and MCA from
rats(20–24, 26).

Kir6.1/SUR2B Smooth
muscle

MMA from rats, pigs and human;
MCA from rats and pigs; BA, DRG,
TG and TNC from rats (20–24, 26).

DRG Dorsal root ganglia, TG trigeminal ganglion, TNC trigeminal nucleus
caudatus, BA basilar artery, MMA middle meningeal artery, MCA middle
cerebral artery
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Nitric oxide (NO)
In humans, infusion of the NO donor, glyceryl tri-
nitrate, and inhibition of the breakdown of cGMP by
sildenafil [24] provoke migraine attacks in migraineurs
[25–27]. The NO-cGMP signaling pathway is involved
in the relaxation of vascular smooth muscle [28]. In
vitro studies with cerebral arteries isolated from rat
and piglet and extra-cerebral arteries from rabbit re-
ported that activation (opening) of KATP channels
contributed to both cAMP- and cGMP-mediated
vasodilation [29–31]. Yuan et al. [32] reported that
sildenafil-induced vasodilation in porcine retinal arte-
rioles was significantly inhibited by glibenclamide and
suggested that cGMP signaling triggers opening of
KATP channels. In contrast, NO-induced dural and
pial artery dilation in rats was not attenuated by the
KATP channel blocker, glibenclamide [33]. Together,
these data suggest that interspecies differences are
likely to explain the discrepancy in findings of the
role of KATP channels in NO-induced vasodilation.

Calcitonin gene-related peptide (CGRP)
CGRP is one of the most potent endogenous vasodila-
tors and major arteries in the intracranial circulation of

man and animals are innervated by CGRP-containing
nerve fibers [34–36]. Efficacy of CGRP antagonism is
established in acute [37, 38] and preventive treatment
of migraine [39]. CGRP activates vascular smooth
muscle KATP channels indirectly through adenylate cy-
clase and protein kinase A (PKA) phosphorylation
(Fig. 4) [40–43]. In rats, CGRP-induced dilation of
the dural and pial arteries in vivo was shown to be
inhibited by glibenclamide [33], but KATP channel
openers do not interact with CGRP release in trigemi-
nal ganglion and trigeminal nucleus caudalis [22].
This suggests that KATP channels are involved in
CGRP-induced intracranial vasodilation.

Pituitary adenylate cyclase activating polypeptide
(PACAP)
Pituitary adenylate cyclase activating polypeptide (PACAP)
is a potent endothelium independent vasodilator of vari-
ous vascular beds, including cerebral arteries [44, 45]. In
vivo and in vitro studies have demonstrated that PACAP
dilates cranial arteries in different species, e.g. human
cerebral arteries [34, 46, 47], pig pia artery, canine basilar
artery, cat cerebral arteries, rabbit posterior cerebral arter-
ies and rat middle cerebral arteries [48–52]. Emerging

Fig. 3 Opening of vascular ATP sensitive K channels. Endogenous molecules (ATP, cAMP and cGMP) and exogenous pharmacological agents
(cromakalim and glibenclamide) regulate the activity of KATP channels, which help controlling the vascular tone
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data suggest that PACAP or it receptors are a promising
target for migraine therapeutics [53]. PACAP has three
types of receptors; Pituitary adenylate cyclase PAC1

(pituitary adenylate cyclase receptor 1), VPAC1 (vasoactive
intestinal peptide and pituitary adenylate cyclase receptor
1) and VPAC2 (vasoactive intestinal peptide and pituitary
adenylate cyclase receptor 2) [54] the two latter ones are
also activated by vasoactive intestinal peptide and all three
receptors are found in cerebral artery smooth muscle cells
[55]. Through these receptors, PACAP leads to an in-
crease in intracellular cAMP, which activates PKA
and produces vasodilation by several mechanisms
including activation of KATP channels (Fig. 4) [45].
Interestingly, glibenclamide could partially inhibit
PACAP induced vasodilation in cerebral, coronary
and pulmonary arteries, suggesting that PACAP may
also activate KATP channels [44, 45].

Prostaglandins
Prostacyclin (PGI2) activates and sensitizes meningeal
sensory afferents, and provokes immediate migraine-like
attacks in migraine sufferers [56]. PGI2 also increases

KATP channel activity in vascular smooth muscle prepa-
rations by cAMP-dependent PKA activation [57] (Fig. 4).

Headache induced by KATP channels openers
In the late 80’s there was a tremendous interest in deve-
loping novel KATP channel openers for hypertension, an-
gina pectoris and asthma. Three pharmacological drugs
were developed, pinacidil, nicorandil and levcromakalim.
One of most common adverse events after treatment
reported in these studies was headache [58–63].
Six clinical trials with pinacidil have been published

for treatment of essential hypertension. Between 7% and
21% of the patients reported headache as an adverse
effect (Table 2).
Nicorandil was tested for the treatment of angina

pectoris and ischemic heart disease. 23% to 88% of
the patients reported headache as an adverse event
(Table 3). The high incidence of headache is likely
due to the mixed KATP channel opener and NO
donor properties of nicorandil which thus cause vaso-
dilation via two separate mechanisms.
Levcromakalim was investigated for the treatment of

asthma and essential hypertension. In these studies

Table 2 Headache incidences registered during randomized controlled trials (RCT) and open label clinical trials with pinacidil

Paper Study design Dose (daily) Indication No. of patients Headache No.

Muiesan et al. 1985, Eur. J. Clin. Pharmacol [86]. RCT 30–75 mg Essential hypertension 30 2 (7%)

Laher & Hickey 1985, J. Int. Med. Res [87]. Open label 12.5 mg Healthy volunteers 12 1 (8%)

D’Arcy et al. 1985, Eur. J. Clin. Pharmacol [88]. Open label 20–100 mg Essential hypertension 23 4 (17%)

Zachariah et al. 1986, Eur. J. Clin. Pharmacol [89]. RCT 62 mg (mean) Essential hypertension 23 ——

Sterndorff & Johansen 1988, Acta Med. Scand [90]. RCT 25–100 mg Essential hypertension 71 7 (10%)

Goldberg 1988, J. Cardiovasc. Pharmacol [91]. RCT 25–100 mg Essential hypertension 145 31 (21%)

Fig. 4 Signaling pathways through vascular smooth muscle KATP channels. Numerous endogenous vasodilators activate vascular smooth muscle
KATP channels through adenylate cyclase and PKA phosphorylation. Conversely, endogenous vasoconstrictors inhibit vascular smooth muscle KATP
channels through DAG and PKC phosphorylation. CGRP, calcitonin gene-related peptide; PGI2, prostaglandin I2; VIP, vasoactive intestinal peptide;
AngII, angiotensin II; NPY, neuropeptide Y; NA, noradrenaline; 5-HT, 5-hydroxytryptamine; Gs, G-protein-coupled receptor alpha stimulation; Gi,
G-protein-coupled receptor alpha i/q; DAG, diacylglycerol; PKA and PKC, protein kinase A and C, respectively
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between 29% and 76% of the patients reported headache
as an adverse event (Table 4).
The selective synthetic KATP channel openers levcroma-

kalim and pinacidil have been shown to induce dilation in
rat cranial arteries [13, 15, 19] and in isolated human
cerebral arteries [64]. Moreover, the arterial dilation can
be inhibited by synthetic KATP channel blockers like glib-
enclamide [10, 33] and PNU37883A [21, 65] (Fig. 3).
These findings suggest that high incidences of headache
could be due to vasoactive effect of the KATP channel
openers in pain-sensitive extra- and/or intracerebral
arteries.

Discussion and future perspectives
KATPchannels are expressed in migraine-related structures
such as the cranial arteries, TG and TNC [18–22, 66]. KATP

channels are also connected to a number of key molecules
in migraine pathogenesis, particularly nitric oxide,
CGRP, PACAP and PGI2 known to provoke migraine
attacks [56, 67–71]. Therefore, the KATP channels are
interesting in migraine context.
Human experimental models have demonstrated that

the activation of the cAMP and cGMP pathways can
trigger headache in healthy volunteers and migraine at-
tacks in migraine sufferers [6, 71, 72]. The cAMP and
cGMP signaling pathways are crucial in the activation of
KATP channels, which result in the relaxation of smooth
muscle [29–31]. Furthermore, synthetic KATP channel
openers like levcromakalim and pinacidil trigger
headache in non-migraine patients [58–63]. Although a
detailed description of levcromakalim- and pinacidil-

induced headache and accompanying symptoms are
lacking, these data support a role of KATP channels in
migraine headache. Because KATP channel openers were
tested for other indications, there are no available data
on the potential migraine-inducing effects of pinacidil
and levcromakalim in migraine patients. It is conceivable
that both headache and migraine are underreported as
adverse events, as was found for the phosphodiesterase
inhibitors, cilostazol and sildenafil [73, 74].
In addition to the vasoactive effects, the KATP channels

might also tap into other parts of the migraine cascade.
For a number of patients, migraine attacks are associated
with transient focal neurological symptoms called the
aura [75], possibly caused by cortical spread depression
(CSD) [76]. During CSD K+ conductance is increased,
and CSD may be inhibited by Kir antagonist [77]. The
fact that KATP channels open under cellular stress, as
seen during long lasting depolarizations, could provide a
link between KATP channels, CSD and migraine aura.
With regard to the migraine pain, it is worth noting that

KATP channels are also found in peripheral nociceptive
fibers [78] and activation of these channels play a crucial
role in anti-nociception at both spinal and supra-spinal
levels [23, 79]. The exact role of these findings in the
headache induced by KATP channel openers is unknown.
If KATP channel openers are in fact able to trigger

migraine, the next step to consider is whether KATP

channel antagonists can relieve migraine. KATP blockers
for the treatment of migraine should be selective for the
Kir6.1/SUR2B subtype because of its dominant presence
in vascular tissue (Table 1). The necessity of a subtype

Table 3 Headache incidences registered during randomized controlled trials (RCT) and open label clinical trials with nicorandil

Paper Study design Dose (daily) Indication No. of patients Headache No.

Camm & Maltz, 1989, Am. J. Cardiol [92]. RCT 20–60 mg Angina pectoris 8 20 mg 50%
40 mg 88%
60 mg 67%

Raftery et al. 1993, Eur. Heart Journal [93]. RCT 20 mg and 40 mg Angina pectoris 18 11 (61%)

Roland 1993, Eur. Heart Journal [94]. Review 10–80 mg Angina pectoris 1680 36%

Wolf et al. 1993, Eur.J.Clin.Pharmacol [95]. RCT 20–200 μg i.v. Healthy volunteers 48 19 (40%)

Witchitz & Darmaon, 1995, Cardiovasc.
Drugs& Therap [96].

Open label 20–40 mg Angina pectoris 197 45 (23%)

Dunn et al. 1999, Pharmacoepidemiology
and Drug safety [97].

Prescription-event
monitoring (PEM) study

Varying Angina pectoris &
ischemic heart disease

13,260 477 (4%)

Table 4 Headache incidences registered during randomized controlled trials (RCT) and open label clinical trials with levcromakalim

Paper Study design Dose (daily) Indication No. of patients Headache No.

Singer et al. 1989, J. Hypertens [98]. RCT 1.5 mg Essential hypertension 8 4 (50%)

Williams et al. 1990, Lancet [60]. RCT 1.5 mg Asthma 16 10 (62%)

Kidney et al. 1993, Thorax [62]. RCT 0.125–0.5 mg Asthma 25 19 (76%)

Suzuki et al. 1995, Arzneim.-Forsch./Drug Res [99]. Open label 0.5–1.0 mg Essential hypertension 14 4 (29%)
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specific blocker is unavoidable because of occurrence of
different subtypes in different tissues. Glibenclamide
cannot be used due to its high affinity to the Kir6.2/
SUR1 subtype of KATP channels present in the pancreas
with hypoglycemia as a side effect [80]. PNU-37883A is
a Kir6.1 selective KATP channel blocker that was origin-
ally developed as a diuretic drug [81, 82]. The drug was
not approved to human studies because of its cardiac
depressant activity in animal studies [83]. This precludes
further clinical development of PNU-37883A due to
possible serious adverse events but may not exclude
further investigations in other blockers against Kir6.1
subunit because it is not clear if all blockers against
Kir6.1 subunit have non-favorable effects. These findings
indicate that the SUR2B subunit and the Kir6.1 subunit
should be a potential target for the treatment of mi-
graine, but proof of concept studies are needed to exam-
ine this hypothesis.

Conclusion
Emerging evidence suggests that KATP channels could be
involved in the pathophysiology of migraine. KATP chan-
nels exist in structures which are believed to be linked to
the pathophysiology of migraine, including cerebral and
meningeal arteries and the trigeminal system [19–22]. It is
established that the cAMP signaling pathway and possibly
cGMP signaling pathway are involved in the activation of
KATP channels [29–31]. This is interesting in migraine
contexts, as the two signaling pathways are likely to be
crucial in the development of a migraine attack.
We suggest that the presented clinical and theoretical

evidence support further studies of KATP channel
openers in migraine context. Future human studies will
help clarify the role of KATP channels in the pathophysi-
ology of migraine.
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