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Abstract

Background: Migraine is one of the most severe primary headache disorders. The nature of the headache and the
associated symptoms during the attack suggest underlying functional alterations in the brain. In this study, we
examined amplitude, the resting state fMRI fluctuation in migraineurs with and without aura (MWA, MWoA
respectively) and healthy controls.

Methods: Resting state functional MRI images and T1 high-resolution images were acquired from all participants.
For data analysis we compared the groups (MWA-Control, MWA-MWoA, MWoA-Control). The resting state networks
were identified by MELODIC. The mean time courses of the networks were identified for each participant for all
networks. The time-courses were decomposed into five frequency bands by discrete wavelet decomposition. The
amplitude of the frequency-specific activity was compared between groups. Furthermore, the preprocessed resting
state images were decomposed by wavelet analysis into five specific frequency bands voxel-wise. The voxel-wise
amplitudes were compared between groups by non-parametric permutation test.

Results: In the MWA-Control comparison the discrete wavelet decomposition found alterations in the lateral visual
network. Higher activity was measured in the MWA group in the highest frequency band (0.16–0.08 Hz).
In case of the MWA-MWoA comparison all networks showed higher activity in the 0.08–0.04 Hz frequency range in
MWA, and the lateral visual network in in higher frequencies.
In MWoA-Control comparison only the default mode network revealed decreased activity in MWoA group in the 0.
08–0.04 Hz band.
The voxel-wise frequency specific analysis of the amplitudes found higher amplitudes in MWA as compared to
MWoA in the in fronto-parietal regions, anterior cingulate cortex and cerebellum.

Discussion: The amplitude of the resting state fMRI activity fluctuation is higher in MWA than in MWoA. These
results are in concordance with former studies, which found cortical hyperexcitability in MWA.
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Background
Migraine is a common disabling disease, affecting about
10% of the population [1]. While not life threatening, it
has a significant effect on the quality of life. Two major
forms of the disease present with or without transient,
focal neurological symptoms, called aura [2]. While the
pathomechanism of migraine is not entirely understood,
the two subgroups of the disease thought to have differ-
ent background [3, 4]. It was suggested that cortical
spreading depression, a slow depolarization wave traveling
anteriorly in the brain is responsible for the aura symp-
toms and occur exclusively in migraine with aura (MWA)
[5, 6]. Cortical hyperexcitability was mentioned as the po-
tential trigger of migraine [7–12] and this hyperexcitability
is also present in MWA more robustly [13].
Information about the resting brain activity can be

noninvasively gathered by BOLD fMRI. Traditionally
fMRI studies compare signal in various phases of a task,
but acquiring BOLD signal in rest, allows the studying of
resting brain activity fluctuations. Interestingly, remote
areas show synchronous activity, which renders resting
state activity into functional networks [14, 15].
Several studies investigated the activity of the rest-

ing state functional networks in migraine and found
various alterations of networks that are implicated in
pain processing [16–19]. Furthermore, a few studies
investigated patients with MWA and migraine without
aura (MWoA) and reported various aspects of altered
connectivity in the subgroups of the disease [20–25].
Remarkably some of the studies found increased
functional connectivity, in comparison to decreased
functional connectivity in migraine.
Most of the resting state fMRI studies investigated

the connectivity between various regions and there-
fore build on the coherent activity in spatially distrib-
uted networks. The variation in the frequency and
the amplitude of the resting state BOLD signal is usu-
ally neglected. The BOLD resting state fluctuation is
a low frequency fluctuation [14, 15]. To filter out the
non-neural noise from the raw BOLD time courses
most of the studies apply filters [16, 26, 27]. However,
neural signal could be detected also in the higher
frequencies [28]. Furthermore, a few recent studies
started to analyse the amplitude of the low frequency
fluctuation of the resting state signals [29, 30] offering
a unique insight into the resting brain activity in vari-
ous diseases but not in migraine.
Based on the above described premises, the increased

cortical excitability in migraine might be related to the
frequency specific alteration of amplitude of the resting
BOLD activity. MWA and MWoA being different in re-
spect to cortical excitability might also appear in the dif-
ferential frequency spectrum of the resting brain activity
in the two subgroups of the disease.
In the current study we investigated the resting state
BOLD fluctuations in migraine with special focus on the
amplitude and the frequency of the activity.

Methods
Participants
Fifty-three patients with migraine were recruited into
this study from the Headache Outpatients Clinic, at the
Department of Neurology, University of Szeged. All of
the patients were diagnosed with episodic migraine and
were scanned during the interictal phase, having had the
the scanning at least one week to the last attack. The
diagnosis set up by the International Classification of
Headache Disorders [2]. Eighteen patients suffered from
MWA (17 visual aura, 1 sensory aura), the other 35
patients never experienced aura. Patients had no other
neurological or psychiatric disorders.
Thirty-two healthy volunteers were recruited. None of

the controls had any records of any neurological or
psychiatric disorders. For demographic data of patients
and controls, see Table 1.
The study was approved by the ethics committee of

the University of Szeged and all study participants gave
written informed consent in accordance with the Declar-
ation of Helsinki (authority number: 56/2011).

Image acquisition
The MR imaging was performed on a 1.5 T GE Signa
Excite HDxt MRI Scanner (Milwaukee, WI, USA). The
head motion was restricted with foam padding around
the head and the noise of the scanner was attenuated
with earplugs. For every participants high-resolution T1
weighted images (3D IR-FSPGR: TR/TE/TI: 10.3/4.2/
450 ms, flip angle: 15°, ASSET: 2, FOV: 25*25 cm,
matrix: 256*256, slice thickness: 1 mm,) and a resting
state fMRI protocol with echo-planar imaging technique
(TE: 40 ms, TR: 3000 ms, matrix: 64*64 cm, FOV:
30*30 cm, slice thickness: 6 mm, flip angle: 90°, NEX: 1,
ASSET: 2,0 Ph, Phases per Loc: 128, volumes: 200) were
acquired. Subjects were asked to be awake during the
acquisition eyes closed.

Data processing
All image processing were performed by FMRIB’s Soft-
ware Library (http://www.fmrib.ox.uk/fsl, Oxford, UK)
toolkits.

Preprocessing
The pre-processing was carried out with FEAT (FMRI
Expert Analysis Tool). The first two images were re-
moved from all resting state datasets. The non-brain
parts were removed using Brain Extraction (BET) [31].
Motion correction (MCFLIRT) [32] were applied in all
images and spatially smoothed with Gaussian kernel of

http://www.fmrib.ox.uk/fsl


Table 1 Demographic data ATK/life: estimated headache attacks over lifetime. ATK/years: annual headache attack frequency. There
were no significant difference between the groups in terms of age (p<0.82) or gender (p<0.8). There were no significant difference
in the disease duration (p<0.65) or allodynia score (p<0.2) between migraine groups. There were significant differences between the
two patient group in VAS (p<0.0.3) and yearly attacks (p<0.03)

Migraine with aura Migraine without aura Healthy

n 18 33 32

age (years; mean and SD) 32.1(8) 35.6(8.9) 35.2(11)

gender (male) 3 3 2

Allodynia 1.6(1.7) 3.2(3) NA

Disease duration (years; mean and SD) 14.2(8.6) 13.7(9.1) NA

ATK/life (days; mean) 461(615) 656(626) NA

VAS 7.6(1.3) 8.7(1.2) NA

ATK/years (days; mead and SD) 29(26) 55(45.6) NA
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6 mm FWHM. The high-pass filter cut-off was applied
to all functional images (with sigma 100 s).
All pre-processed resting state images were registered

to standard space (MNI152 T1 image; 2 mm slice thick-
ness) and to their high-resolution T1 images with linear
(FLIRT) and then with non-linear registration (FNIRT)
[32]. All images were resampled to 4 mm isovoxels.

Independent component analysis
Resting state networks were identified by group inde-
pendent component analysis as implemented in the ME-
LODIC toolbox, part of the FSL software library (FMRIB
Software Library, htttp://www.fmrib.ox.uk/fsl) [15]. The
individual preprocessed and standard space registered
functional images were concatenated after voxel-wise
de-meaning and variance normalization. The 4D data
were decomposed into a set of matrices that characterize
the underlying processes in the spatial and temporal
domains in such a way that spatial matrices are max-
imally non-Gaussian. The number of components was
estimated by applying the Laplace approximation to the
Bayesian evidence of a probabilistic principal component
model [33]. Spatial maps were processed by using an al-
ternative hypothesis test based on the fitting a Gaussian/
Gamma mixture model to the distribution of voxel in-
tensities within spatial maps and a posterior probability
threshold of p > 0.5. The resulting subject-wise time
courses are to be understood as the temporal character-
istics of the network activity across the entire spatial
map for each individual subject.

Amplitude of resting state activity
The frequency specific modulation of the amplitude of
resting activity was analysed by discrete wavelet decom-
position (Wavelet Toolbox of the Matlab software pack-
age; MathWorks Inc). The networks’ time courses were
divided into five consecutive frequency bands (band1:
0.16–0.08 Hz, band2: 0.08–0.04 Hz, band3: 0.04–
0.02 Hz; band4: 0.02–0.01 Hz; band5: 0.01–0 Hz) using
discrete wavelet decomposition. Discrete wavelet decom-
position is an implementation of the wavelet transform
using a set of predefined wavelet scales and translations
and decomposes the signal into mutually orthogonal set
of wavelets. Wavelets are brief waves, they are finitely
extended and their oscillations decay to zero rapidly,
satisfying the admissibility condition:
∫Ψ(t)dt = 0.
By dilating and translating a “mother” wavelet (Ψ) and

a “father” wavelet (Φ) (∫Φ(t)dt = 1) a wavelet family can
be obtained:

Ψjk tð Þ ¼ 1
ffiffiffiffi

2j
p Ψ

t−2jk
2j

� �

;

Φjk tð Þ ¼ 1
ffiffiffiffi

2j
p Φ

t−2jk
2j

� �

;

where j is index of the scale Sj = 2j and k indexes the
K = n/2j location in time. The Daubechies wavelet was
used as mother wavelet. The analysis by using a half-
band filtering, decomposes the data over a hierarchy
of scales (Sj). At each scale the data is split into two
orthogonal components: details (djk) containing the
high frequency information and approximations (ajk)
containing the low frequency information [34]. By five
levels of decomposition the following frequency bands
were derived 0–0.16 Hz: 0.16–0.08 Hz, 0.08–0.04 Hz,
0.04–0.02 Hz, 0.02–0.01 Hz and 0.01–0 Hz.
To measure the amplitude of the resting activity in the

various frequency bands an envelope was fitted to the
absolute values of each frequency bands: The minimums
of the following function was identified:

f tð Þ ¼
d sgn dy

dt

� �� �

dt

and a linear interpolation of these points were used to

http://www.fmrib.ox.uk/fsl


a

b

c

Faragó et al. The Journal of Headache and Pain  (2017) 18:8 Page 4 of 9
create an envelope. The envelopes were averaged over
time to describe the mean activity in the given frequency
band.
The analysis outlined above was applied to (i) the

mean activity of the ICA identified resting state net-
works and (ii) to the voxel-wise preprocessed fMRI data.

i. To compare the amplitude of the mean network
timecourses across groups in the individual
frequency bands General Linear Model (GLM)
based test was used. Gender and age were included
in our analysis as covariate.

ii. For voxel-wise comparison of the amplitude of the
resting activity across groups a nonparametric
permutation test was performed (5000 permutations)
for each frequency bands. The design encoded for
group membership, age and gender were used as
nuisance variables. For statistical analysis
threshold-free cluster enhancement were used
(TFCE) and corrected for multiple comparisons
(across space) within the permutation framework.
Age and gender also included in this analysis as
nuisance variable.

Additionally, we performed the voxel wise comparison
of the resting state networks’ for the non-filtered
data also.
d

Results
Demographical data
There were no significant difference between the
groups’ age or gender distribution. There were no sig-
nificant differences between the two migraineus group
in disease duration.
e

Amplitude of the activity of the resting state functional
networks
A MELODIC analysis found 33 components in the
healthy controls. The artefact components were removed
from our analysis based on previous studies [14, 15] and
five networks were included for analysis: default mode
network, right attention network, left attention network,
medial visual network, lateral visual network.
Fig. 1 All of the investigated network ((a) medial visual, (b) lateral
visual, (c) default mode, (d) right attention, (e) right attention)
showed higher amplitude in the 0.08–0.04 Hz frequency range in
MWA compared to MWoA. The images on the left depicting the
resting state networks are thresholded at p < 0.5 and overlaid on the
standard MNI_152 brain. The boxplots depicting the amplitude of
the activity of the networks in the 0.08-0.04 Hz frequency range. The
central mark is the median, the edges of the box are the 25th and
75th percentiles, the whiskers extend to the most extreme datapoints
MWA vs. healthy controls
There were no significant differences between the ampli-
tude of the resting activity in MWA vs. healthy controls.
While not significant, in the highest frequencies (0.16–
0.08 Hz) the amplitude of the resting activity was slightly
higher in the left attention network (p = 0.07) and in the
right attention network (p = 0.059) in MWA as com-
pared to healthy controls.
MWA vs. MWoA
The amplitude of the activity was higher (p < 0.05) in all
examined networks in the 0.08–0.04 Hz frequency range
and in the lateral visual network also in the 0.16–
0.08 Hz frequency band (Fig. 1) in the MWA group.
There were no other significant results in any other fre-
quency bands or in case of the non-filtered data.



Table 2 Increased amplitude of resting state activity
fluctuations in MWA as compared to MWoA

Region side x y z p<

0–0.16 Hz Inferior parietal lobule L -38 -82 40 0.03

0.16–0.08 Hz Inferior parietal lobule L -34 -84 42 0.02

Cerebellum L -6 -84 -40 0.04

Occipito-temporal junction L -58 -70 0 0.03

Occipital pole L -16 -96 14 0.05

Inferior parietal lobule R 14 -84 34 0.05

Cerebellum R 36 -34 -52 0.05

0.08–0.04 Hz Cingulate gyrus L -6 14 -18 0.04

Inferior parietal lobule L -34 -84 42 0.03

Cerebellum R 24 -84 -40 0.04

Cerebellum L -14 -80 -46 0.05

0.04–0.02 Hz Inferior parietal lobule L -34 -84 42 0.02

Superior frontal sulcus R 26 34 44 0.04

Precentral gyrus L -44 -12 62 0.04

Frontal pole L -34 52 -16 0.03

Cingulate gyrus L 0 -2 42 0.05

Occipital lobe L -22 -92 12 0.04

0.02–0.01 Hz Inferior parietal lobule L -44 -60 58 0.03
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MWoA vs. Healthy controls
The amplitude of resting activity in the 0.08–0.04 Hz
range was lower in patients without aura in the default
mode network (p < 0.05) (Fig. 2). There were no other
significant results in any other frequency bands or in
case of the non-filtered data.

Voxel-wise comparison of the amplitude of resting activity
The voxel-wise comparison of the amplitude of resting
activity showed higher amplitudes (p < 0.05, corrected
for multiple comparisons) in the left parietal lobe in all
frequency ranges in MWA compared to MWoA. In
addition, in the 0.08–0.04 Hz frequency band the ampli-
tudes were higher in the bilateral cerebellum, in the left
occipital pole and occipito-temporal junction, and a
smaller cluster was found in the right inferior parietal
lobule. In the 0.04–0.02 Hz frequency band the ampli-
tudes were higher in MWA compared to MWoA in the
left inferior parietal lobule, bilateral cerebellum and in
the anterior cingulate gyrus. In the 0.02–0.01 Hz range
next to the inferior parietal lobule, occipital pole and
cingulate gyral differences amplitudes were found higher
in the bilateral frontal lobe around the superior frontal
sulcus and precentral gyrus (Table 2 and Fig. 3).
There were no differences between the MWoA and

healthy group or between the MWA and control group.

Discussion
This study identifies novel frequency specific alterations
of resting fluctuation of fMRI measured brain activity.
Our analysis showed that amplitude of resting state
BOLD fluctuation is higher in MWA in the cingulate
cortex, superior parietal lobule, cerebellum and bilateral
frontal regions compared to MWoA. Furthermore, amp-
litude of the activity of the resting state networks in the
0.08–0.04 Hz frequency range was higher in MWA
than in MWoA in all examined resting state net-
works. In MWoA the amplitude of the activity
Fig. 2 The default mode network showed higher amplitude in the 0.04–0.0
depicting the resting state networks are thresholded at p < 0.5 and overlaid
amplitude of the activity of the networks. The central mark is the median, t
extend to the most extreme datapoints
fluctuation of the default mode network was lower
than in healthy controls.
Several lines of evidence supports the hyperexcitability

of the cortex in migraine [7–12]. The amplitude of visual
evoked potentials (VEP) were showed higher in migrai-
neurs [11, 34–36]. However, recent reports showed that
the VEP measured hyperexcitability predominantly true
for migraine with aura [37, 38].
The threshold of transcranial magnetic stimulation

evoked phosphenes are also lower in migraineurs and
the prevalence of phosphenes are higher [9]. Interest-
ingly, recent metaanalysis pointed out that, similar to
the VEP results, this kind of TMS measured
2 Hz in healthy group compared to MWoA. The images on the left
on the standard MNI_152 brain. The boxplots depicting the
he edges of the box are the 25th and 75th percentiles, the whiskers



Fig. 3 The frequency specific voxel wise comparison of the amplitude
of the resting activity showed higher amplitudes in MWA as compared
to MWoA in all freqeuncy ranges. The voxel wise changes in each
frequency range. The images are thresholded at p < 0.05 corrected for
multiple comparisons and overlaid on the standard MNI_152 brain.
We marked the sidedness with 'R' as the right side. The X-Y-Z letters
indicates the axes of the pictures above them
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hyperexcitability is not evident for MWoA and only true
for patients experiencing aura [39].
Similarly, neuroimaging PET and fMRI studies found

higher activation for visual stimuli in migraineurs [40–42],
but recent reports showed that patients with aura show
higher BOLD response to photic stimuli in contrasts to
those migraineurs not experiencing aura symptoms [43, 44].
A possible explanation of such interictal hyperexcit-

ability in migraine might be the higher interictal glutam-
ate/glutamine ratio [45] or the lower gamma-amino
butyric acid level [46] in the occipital cortex as shown
by MR spectroscopy studies. A recent investigation also
showed larger reduction of N-acetyl-aspartate levels in a
functional MR spectroscopy study in MWA but not in
MWoA [47] indicating a less effective mitochondrial
functioning in MWA.
These above mentioned studies, indicating cortical

hyperexcitability in MWA are in line with our current
results. The amplitude of the resting BOLD fluctuation
was higher in MWA patients in regions highly related to
pain processing and in certain frequencies, the ampli-
tude of the activity of the resting state networks was also
higher. While there is no direct evidence that various
electrophysiological measures of cortical excitability are
represented as a variation in the amplitude or the
frequency of the resting BOLD fluctuations, one might
speculate that they are strongly related and both depict
important features of cortical function.
Several researches investigated the brain resting fMRI

activity in migraine with various approaches [17, 19–21,
23, 43, 48, 49]. These approaches are not giving direct
information on the cortical hyperexcitability, but a meas-
ure of functional interaction. A few studies investigated
the amplitude of the resting state BOLD fluctuation in
chronic pain conditions [50, 51] and found higher
amplitude of resting activity in chronic back pain, irrit-
able bowel syndrome, knee osteoarthritis and complex
regional pain syndrome. Only single study investigated
the amplitude of the low frequency fluctuations in 24
migraineurs, without grouping the patients based on the
aura symptoms [52]. Concentrating on only the low
frequency component of the BOLD signal (0.01–
0.08 Hz) they found lower amplitude in migraineus in
the cerebellum, bilateral frontal and occipital regions
and increased amplitudes in the brainstem and insula.
Also our results sustain the well known importance to
investigate patients with and without aura symptoms in
separate groups. Only the patients experiencing aura
symptoms were the ones who had higher amplitude
BOLD fluctuation in our study. This was true for the
amplitude of the resting activity and also for the ampli-
tude of the activity of the resting state networks.
The importance of the various frequencies of BOLD

fluctuations is not yet known but recently a few studies
started to explore this feature [53], especially in pain
conditions [30, 54]. It was proposed that functional
connectivity of various brain regions are represented in
different dominant frequency bands [55]. Another op-
tion might be that migraine was proposed to be a neuro-
vascular disease, and the altered neurovascular coupling
may affect the frequency of the resting BOLD fluctua-
tions [56] by acting as a filter. Furthermore, the group
difference in the resting state network activity might well
be the result of improved signal to noise ratio by filter-
ing out the low and high frequency artifact. Since most
of the slow frequency fluctuation in our analysis with a
relatively long TR were shown to be neural origin [57],
this hypothesis seems rather unlikely.
Another important aspect of our results is the spatial

localisation of the amplitude differences. In the various
frequency ranges extensive fronto-parietal and cerebellar
areas showed higher activity in MWA patients. Most of
these regions were associated with various aspects of the
pain processing. Primary and secondary somatosensory
cortices, insula, cingulate cortex and prefrontal cortex
and subcortical regions, such as the periaqueductal gray
matter, hypothalamus, amygdala, hippocampus and cere-
bellum are commonly activating in response to painful
stimuli and referred to as the pain matrix [58]. These
key regions were reported to subserve multiple functions
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in pain processing, including sensory discrimination,
motivation-affect, motor, attention and also arousal and
response selection functions [59].
Cingulate cortex in particular was shown to be one of

the key region in experiencing pain [60–62] and it is also
part of the descending pain modulatory system [63].
Anterior cingulate cortex is connected to the periaque-
ductal grey matter, a key region in migraine pathome-
chanism [64]. In a recent work we also showed that
chronic inflammatory pain related sensitization is medi-
ated by the altered activation and connectivity of the
cingulate cortex in rats [65].
It was also shown that cerebellum actively contributes

to various aspects of pain processing [66]. Subclinical
vestibulo-cerebellar dysfunctions were found in migraine
with and without aura [67, 68]. The macro and micro-
structure of is cerebellum is altered in migraine [69, 70].
The interictal perfusion of the cerebellum was not found
affected by the disease, independently of aura symptoms
[71]. In migraine patients Wang and colleagues found
altered amplitude of low frequency fluctuation [52],
higher and lower amplitudes were found in various parts
of the cerebellum. Importantly, in their study no infor-
mation was given if the patients experienced aura.
The fronto-parietal regions showing increased amplitude

of resting activity fluctuation in our study are presumably
the same, which are considered to be associated with
executive functions. The subclinical executive dysfunction
is a known feature of the disease [49, 72, 73]. A recent
investigation also described the altered expression of the
fronto-parietal resting state network in MWoA patients
[49] in highly similar regions what we have found in our
analysis.
Conclusion
In summary, the the regions we found to have increased
amplitude of activity fluctuation in MWA patients are
those known to be affected by the disease and respon-
sible for the functional alterations also.
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