MEETING ABSTRACT

Open Access

EHMTI-0125. Studying the permeability of the blood-brain barrier during migraine attacks using [11C]-dihydroergotamine

C Schankin^{1*}, F Maniyar², Y Seo³, S Kori⁴, M Eller⁵, J Blecha³, S Murphy³, T Sprenger⁶, H VanBrocklin³, P Goadsby⁷

From 4th European Headache and Migraine Trust International Congress: EHMTIC 2014 Copenhagen, Denmark. 18-21 September 2014

Introduction

Due to unfavorable molecular size and lipophilicity, migraine-specific medications such as dihydroergotamine (DHE) are not expected to penetrate the blood-brain barrier (BBB). A breakdown of the BBB during migraine attacks has been postulated as the mechanism in which DHE accesses postulated central sites of action.

Aim

To demonstrate whether the permeability of the BBB increases for DHE during migraine attacks.

Methods

As a measure of parenchymal binding in the brain and thus BBB penetration, we calculated the influx rate constant Ki for the radioligand [11C]-dihydroergotamine ([11C]-DHE) using arterial blood input function over the course of dynamic positron emission tomography (PET). The influence of migraine on the Ki maps, i.e. the BBB was assessed in a second [11C]-DHE scan during glyceryl trinitrate (GTN)-induced migraine attacks.

Results

Independent from the presence of migraine headache, six migraineurs and six age- and gender-matched control subjects showed identical binding of [11C]-DHE at the choroid plexus, the pituitary gland, and the venous sinuses. There was no binding (Ki = 0/min) in the brain parenchyma, including the candidate brainstem sites of action during migraine (periaqueductal grey, raphe nuclei) and the area with the highest density of the highest-affinity DHE receptors (hippocampus).

¹Department of Neurology, University of Munich Hospital - Großhadern, Munich, Germany

Full list of author information is available at the end of the article

© 2014 Schankin et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Conclusions

The lack of ictal binding of [11C]-DHE to the brain parenchyma suggests that the BBB remains intact for DHE during migraine attacks. The efficacy of DHE in treating an acute migraine attack may have a peripheral component although some implicated structures remain outside the BBB.

Authors' details

¹Department of Neurology, University of Munich Hospital - Großhadern, Munich, Germany. ²Department of Neurology, The Royal Hospital London, London, UK. ³Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA. ⁴Allergan Inc., MAP Pharmaceuticals Inc., Mountain View, USA. ⁵Department of Neurology, University of California San Francisco, San Francisco, USA. ⁶Department of Neurology and Division of Neuroradiology, University Hospital Basel, Basel, Switzerland. ⁷Headache Group, NIHR-Wellcome Trust Clinical Research Facility King's College London, London, UK.

Published: 18 September 2014

doi:10.1186/1129-2377-15-S1-F22 Cite this article as: Schankin *et al.*: EHMTI-0125. Studying the permeability of the blood-brain barrier during migraine attacks using [11C]-dihydroergotamine. *The Journal of Headache and Pain* 2014 15(Suppl 1):F22.