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stratified by disease duration
Ling Zhao1, Jixin Liu2, Xilin Dong1, Yulin Peng1, Kai Yuan2, Fumei Wu1, Jinbo Sun2, Qiyong Gong3, Wei Qin2*

and Fanrong Liang1*
Abstract

Background: Advanced neuroimaging approaches have been employed to prove that migraine was a central
nervous system disorder. This study aims to examine resting-state abnormalities in migraine without aura (MWoA)
patients stratified by disease duration, and to explore the neuroimaging markers for reflecting the disease duration.

Methods: 40 eligible MWoA patients and 20 matched healthy volunteers were included in the study. Regional
homogeneity (ReHo) analysis was used to identify the local features of spontaneous brain activity in MWoA patients
stratified by disease duration, and analysis was performed to investigate the correlation of overlapped brain
dysfunction in MWoA patients with different disease duration (long-term and short-term) and course of disease.

Results: Compared with healthy controls, MWoA patients with long-term disease duration showed comprehensive
neuronal dysfunction than patients with short-term disease duration. In addition, increased average ReHo values in
the thalamus, brain stem, and temporal pole showed significantly positive correlations with the disease duration.
On the contrary, ReHo values were negatively correlated with the duration of disease in the anterior cingulate
cortex, insula, posterior cingulate cortex and superior occipital gyrus.

Conclusions: Our findings of progressive brain damage in relation to increasing disease duration suggest that
migraine without aura is a progressive central nervous disease, and the length of the disease duration was one of
the key reasons to cause brain dysfunction in MwoA patients. The repeated migraine attacks over time result in
resting-state abnormalities of selective brain regions belonging to the pain processing and cognition. We predict
that these brain regions are sensitive neuroimaging markers for reflecting the disease duration of migraine patients
without aura.
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Background
Migraine headache is a common neurological disorder
which causes significant individual and societal burden
due to pain and environmental sensitivities [1]. It was
ranked the seventh highest among specific causes of dis-
ability globally. Migraine has two subtypes, and two thirds
of migraine patients suffer from MWoA which is typically
characterized as a unilateral and pulsating headache, and
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an autonomic nervous system dysfunction [2]. The recur-
rent headache manifests in attacks lasting 4–72 hours and
affects patients 1–14 times each month in the episodic
form. It is aggravated by routine physical activity, and is
accompanied by vomiting, nausea, photophobia or phono-
phobia. Migraine may result in substantial pain, a decrea-
sed overall quality of life, and cause higher risks for
ischemic stroke, unstable angina, and affective disorders
than people without migraine [3-6].
Advanced neuroimaging approaches have been employed

to investigate structural and functional brain changes in
migraineurs, and proved that migraine was a central ner-
vous system disorder [1]. The insula, anterior cingulate
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cortex (ACC), thalamus, prefrontal cortex (PFC), orbito-
frontal cortex (OFC), parahippocampal cortex, periaque-
ductal gray matter (PAG), inferior frontal gyrus (IFG),
brainstem, precentral gyrus, and cerebellum have been
reported to show structural and functional alterations
[7-15]. Furthermore, gray matter reduction based on voxel-
based morphometric (VBM) studies was correlated with
attack frequency or headache duration in migraine patients
[13,16-18]. Moreover, task-related functional magnetic
resonance imaging (fMRI) studies revealed abnormal acti-
vation of some brain regions associated with pain-related
information processing in migraine patients, such as the
ACC, the PFC, the OFC, insula and the supplementary
motor area (SMA) [10,11,19]. Numerous findings have sup-
ported that migraine may have cumulative effects on brain
structure and function, and repeated attacks over time
would result in secondary damage on several brain regions
involved in central pain processing [14,17,20-22]. Moreover,
some preliminary neuroimaging studies provided some
evidence about increased risk of brain abnormalities with
increasing attack frequency [5,17,21,23] and disease dur-
ation [15,17,24] in migraineurs. However, few studies have
evaluated the characteristic in the resting-state in MWoA
patients stratified by disease duration.
In the current study, we performed a ReHo approach

[25] to compare the blood oxygen level-dependent
(BOLD) signals of the brains in MWoA patients along
with healthy subjects during the resting-state. The ReHo
method focuses on the similarities or coherence of the
intraregional spontaneous low-frequency (<0.08 Hz)
BOLD signal, which enables a novel perspective to
understand the functional deficits in particular brain
regions. An important advantage of using the ReHo
method over other methods is that it can examine the
regional activity characteristics of each voxel. It can also
detect changes or modulations that are induced by differ-
ent conditions across the whole brain in a voxel-by-voxel
manner, without requiring any prior knowledge. Previ-
ously, our group has employed the ReHo method only to
find that MWoA patients showed a significant decrease in
ReHo values in the right ACC, PFC, OFC and SMA [12].
In addition, the ReHo values were negatively correlated
with the duration of disease in the right ACC and PFC
[12]. In order to further assess and validate whether some
brain abnormalities serve as markers for disease history in
MWoA patients, we investigated the resting-state dif-
ference between MWoA patients with long-term (LT)
disease duration and MWoA patients with short-term
(ST) disease duration. We hypothesized that, as compared
with healthy controls, (1) MWoA patients with LT disease
duration would display more neuronal dysfunction than
patients with ST disease duration; (2) the overlapped brain
dysfunction in LT and ST patients group may be asso-
ciated with the course of disease in migraineurs.
Methods
Study participants
40 eligible MWoA patients were recruited from the
neurology department of the Teaching Hospital of
Chengdu University of Traditional Chinese Medicine.
The diagnosis of MWoA was established according to
the classification criteria of the International Headache
Society (IHS) [26]. The inclusion criteria were as fol-
lows:(1) all subjects were right-handed, and had 2 to 8
migraine attacks per month during the last 3 months
and during the baseline period (4 weeks before enrol-
ment); (2) all subjects were 18 to 55 years of age; in
addition, start of headache should be before the age of
50 years; (3) had received education for more than 6
years and had completed a baseline headache diary; (4)
MWoA patients were selected on the basis of disease
duration >10 years (LT) or < 5 years (ST); (5) had no
migraine 72 hours prior to the scan; (6) no habit of
long-term analgesics consumption; (7) did not take any
prophylactic migraine medication during the previous
month; and (8) no contraindications for exposure to a
high magnetic field. Healthy subjects were recruited from
the local community and were screened by a neurologist
specialized in headaches. 20 right-handed, age-matched
and education-matched healthy subjects were enrolled.
They either had no headache days per year or had family
members who suffered regularly from a migraine or other
headache.
Exclusion criteria for MWoA patients and healthy

controls were: (1) existence of neurological diseases; (2)
had hypertension, diabetes mellitus, hypercholesteremia,
vascular/heart disease, and major systemic conditions;
(3) pregnant or lactating women; (4) alcohol or drug
abuse; (5) any neuroimaging research study participation
during the last 6 months; and (6) inability to understand
the doctor’s instructions.
This study was approved by the ethics committee at the

Teaching Hospital of Chengdu University of Traditional
Chinese Medicine. All subjects gave written, informed
consent after the experimental procedures had been fully
explained.

Study design
All patients should have recorded headache diaries for 4
weeks (baseline phase) before enrolment to assess disease
activity (disease duration, headache degree, and attack
frequency). Patients meeting the inclusion criteria were
assigned to two groups based on different disease duration
after the baseline period.
The headache diary documented the migraine attack

frequency and severity of headache according to the
guidelines of the IHS for clinical trials for migraine [27].
The VAS score 0–10 measured the intensity of headache.
fMRI scans were scheduled 2 weeks after enrolment. In



Table 1 Baseline and demographics for MWoA patients
and healthy subjects

Items MWoA patients
(n = 40)

Healthy subjects
(n = 20)

P value

Age (years) mean (SD) 30.5(10.8) 28.4(8.9) 0.4569

Gender (male/female) 12/28 5/15 0.4658

Education (years) 12.6(4.7) 14.2(6.4) 0.2764

Mean disease duration
in years (SD)

10.15(7.01) NA

Notes: SD, Standard deviation.
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addition, records in the headache diary were checked to
insure every patient did not suffer from a migraine attack
at least 72 hours prior to the brain scan.

Imaging data acquisition
The imaging data were carried out in a 3 Tesla Siemens
MRI system (Allegra, Siemens Medical System, Erlangen,
Germany) at the Huaxi MR Research Center, West China
Hospital of Sichuan University, Chengdu, China. A stand-
ard eight-channel phase-array head coil was used, along
with restraining foam pads to minimize head motion and
to diminish scanner noise. Prior to the functional run, a
high-resolution T1structural image for each subject was
acquired using a three-dimensional MRI sequence with a
voxel size of 1 mm3 employing an axial fast spoiled
gradient recalled sequence (TR = 1900 ms, TE = 2.26 ms,
data matrix = 256 × 256, flip angle = 9°, FOV = 256 mm×
256 mm). The structural images were examined to ex-
clude the possibility of clinically silent lesions for all of the
participants by two expert radiologists. The resting-state
functional images were obtained with echo-planar imaging
(EPI) (30 continuous slices with a slice thickness = 5 mm,
TR = 2000 ms, TE = 30 ms, flip angle = 90°, FOV = 240
mm× 240 mm, matrix = 64 × 64). During 6-min fMRI
scanning, participants were instructed to keep their eyes
closed, relax, move as little as possible, and stay awake. It
needs to be emphasized that if there was an attack for
migraine patients in the check reservation, they could not
be scanned and the scan would be postponed to ensure
they were scanned during the migraine interval.

Data preprocessing
In the functional image data preprocessing, the first five
scans were discarded to eliminate nonequilibrium effects
of magnetization and to allow participants to become
familiar with the scanning circumstances. Data prepro-
cessing was done using Statistical Parametric Mapping
(SPM5, http://www.fil.ion.ucl.ac.uk/spm). The images
were corrected for the acquisition delay between slices,
aligned to the first image of each session for motion
correction and spatially normalized to the standard
Montreal Neurological Institute (MNI) template in
SPM5. We calculated the maximum excursion movement
values for each of the translation planes (x, y, and z) and
each of the rotation planes (roll, pitch, and yaw) for every
participant. None of them had head movements exceeding
1 mm on any axis and head rotation greater than 1° during
the entire fMRI scan. Finally, a band-pass filter (0.01 Hz <
f < 0.08 Hz) was applied to remove physiological and
high-frequency noise.

Data analysis
Baseline and demographic data were analyzed by SPSS
14.0 statistical software (SPSS Inc., Chicago, IL, USA).
Baseline characteristics were summarized by descriptive
statistics for each group and in the total study popu-
lation. Two independent-sample t-tests were used to
examine differences between groups (95% CI, 2-sided).
Kendall’s coefficient of concordance (KCC) [28] was

used to evaluate ReHo [25], which was performed using
the Resting-State fMRI Data Analysis Toolkit (X.-W.
Song et al., Beijing Normal University, Beijing, China,
http://www.restfmri.net). Individual ReHo maps were
generated by assigning each voxel a value corresponding
to the KCC of its time series with its nearest 26 neigh-
boring voxels [25]. Then, a mask (made from the MNI
template to assure matching with the normalization
step) was used to remove non-brain tissues and noise
from the ReHo maps. Only the voxels within the mask
were analyzed further. The individual ReHo maps were
standardized by their own mean KCC within the mask.
Then, a Gaussian kernel with a full-width at half-
maximum of 4 mm was used to smooth the images in
order to reduce noise and residual differences. Control-
ling for age, two independent-sample t-tests were used
to compare the ReHo results between different groups.
The false discovery rate (FDR) was used to correct the
multiple comparisons. In addition, correlation analyses
were performed in order to delineate possible correla-
tions between average ReHo values of the overlapped
brain dysfunctional regions in LT and ST groups and the
disease duration.
Results
Participants
There were no significant differences in the demogra-
phics including age, gender, and education between
MWoA patients and healthy subjects (p > 0.05) (Table 1).
There were no significant differences in the demographics
including sex, education, family history, migraine attack
frequency, and visual analogue scale (VAS) score between
ST group patients and LT group subjects (p > 0.05).
Patients in the LT group were older and had longer
disease duration compared with patients in the ST
group (p < 0.05) (Table 2).

http://www.fil.ion.ucl.ac.uk/spm
http://www.restfmri.net


Table 2 Baseline and demographics for MWoA patients

Items ST group
(n = 20)

LT group
(n = 20)

P value

Age (years) mean (SD) 27.12 (8.18) 37.52 (12.2) 0.0009

Gender (male/female) 5/15 7/13 0.7311

Education (years) 13.2 (6.03) 13.8 (5.06) 0.7352

Family history (Y/N) 6/14 8/12 0.3705

Disease duration in years (SD) 4.05 (1.64) 16.25 (1.47) 0.0000

Affect frequency per month* (SD) 4.5 (3.5) 5.38 (5.8) 0.5647

VAS score* 5.37 (1.34) 5.0 (1.8) 0.4654

Notes: SD, Standard deviation; VAS, Visual Analogue Scale; Y, yes; N, no.
*measured for the 4 weeks before enrolment.
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Neuroimaging results
Compared with healthy subjects, MWoA patients with
ST disease duration showed significantly higher ReHo
values in the bilateral thalamus, IFG (Brodmman area
(BA) 47), middle occipital gyrus (MOG) (BA19), left
insula (BA13), caudate, middle frontal gyrus (MFG)
(BA8), middle temporal gyrus (MTG) (BA37), inferior
occipital gyrus (IOG) (BA19), right ACC (BA32), medial
frontal gyrus (MeFG) (BA25), and superior temporal
gyrus (STG) (BA42). The results revealed MWoA
patients with ST disease duration showed a significant
decrease in ReHo values in the bilateral MFG (BA8,
BA10), MTG (BA21), left lingual gyrus (BA17), right
MOG (BA19), cerebellum, and brain stem (controlling
for age, p <0.01, FDR corrected) (Additional file 1,
Figure 1a).
In this study, the MWoA patients with LT disease dur-

ation showed increased ReHo values in the bilateral
Figure 1 Differences between MWoA patients and healthy subjects in
patients with LT disease duration; p < 0.01, FDR corrected; Warm colors ind
decreases in MWoA patients.
ACC (BA24, BA32), amygdala, thalamus, caudate, lenti-
form nucleus, uncus, IFG (BA11, BA47), MFG (BA11),
SFG (BA6, BA11), MTG (BA21), temporal pole (BA38),
cerebellum, brain stem (including pons, medulla, and
midbrain), and left hippocampus compared with healthy
subjects. On the contrary, the results seemed decreased
in the bilateral ACC (BA24), insula (BA13), IFG (BA45,
BA47), MFG (BA6), MeFG (BA6, BA8), SFG (BA6), MTG
(BA21, BA39), MOG (BA18, BA19), cuneus (BA18,
BA19), lingual gyrus (BA18, BA19), inferior parietal lobule
(IPL) (BA40), postcentral gyrus (BA6, BA43), and precu-
neus (BA19, BA31), left fusiform gyrus (BA19), and right
posterior cingulate cortex (PCC) (BA31) (controlling for
age, p < 0.01, FDR corrected) (Additional file 2, Figure 1b).
Correlation analysis results demonstrated that in-

creased average ReHo values in the thalamus (r = 0.5269,
p = 0.0014), brain stem (r = 0.4180, p = 0.0139), and tem-
poral pole (r = 0.4939, p = 0.0030) showed significantly
positive correlations with the disease duration (Figure 2).
There were respectively significant negative correlations
between the decreased average ReHo values of the
ACC (r = −0.5452, p = 8.5452*e-4), insula (r = −0.5891,
p = 2.4653*e-4), PCC (r = −0.5800, p = 3.2389*e-4), SOG
(r = −0.36, p = 0.049) and the disease duration (Figure 2).
The correlation between VAS score and attack frequency
and resting-state properties were also checked, but no
results exceeded the threshold.

Discussion
To our knowledge, this study is the first one to investi-
gate characteristic of regional homogeneity in patients
with episodic migraine without aura stratified by disease
ReHo values. a. MWoA patients with ST disease duration; b. MWoA
icate ReHo increases in MWoA patients; cool colors indicate ReHo



Figure 2 The correlation of average ReHo values of the overlapped brain dysfunction in LT vs HC and LT vs ST with the disease
duration. Warm colors indicate ReHo increases in MWoA patients; cool colors indicate ReHo decreases in MWoA patients; ACC, anterior cingulate
cortex; THAL, thalamus; TP, temporal pole; PCC, posterior cingulate cortex; SOG, superior occipital gyrus; LT, MWoA patients with long-term
disease duration; ST, MWoA patients with short-term disease duration; HC, healthy controls.

Zhao et al. The Journal of Headache and Pain 2013, 14:85 Page 5 of 9
http://www.thejournalofheadacheandpain.com/content/14/1/85
duration. ReHo hypothesizes that a given voxel is tem-
porally similar to that of its neighbors [25]. It is calcu-
lated by using Kendall’s coefficient of concordance,
which could obtain reliable results in a resting-state
fMRI data analysis [29]. Therefore, ReHo reflects the
temporal homogeneity of the regional BOLD signal
rather than its density. Compared with healthy controls,
several common brain regions showed abnormalities in
MWoA patients with ST and LT disease duration during
the resting-state, including IFG, MFG, MTG, ACC,
thalamus, and basal ganglia. These results were mainly
involved in pain-related processing, and were similar to
previous reports in migraineur studies which focused on
structural [16,17,30,31], task-related [11,19,21], and rest-
ing-state [12-15,24] abnormalities. Furthermore, com-
pared with healthy controls, MWoA patients with LT
disease duration might display comprehensive neuronal
dysfunction than patients with ST disease duration. PCC,
lentiform nucleus, uncus, temporal pole, MOG, cuneus,
fusiform gyrus, inferior parietal lobule, postcentral gyrus,
precuneus, and brain stem were only found in MWoA
patients with LT disease duration. In the current study,
abnormal ReHo in MwoA patients was relevant to the
changes of temporal aspects of neural activity in the brain
regions. Increased or decreased ReHo suggests that neural
function in local regions is more or less synchronous dur-
ing resting-state. The results demonstrated that the long
history of disease might contribute to accumulating brain
damage due to the repetitive occurrence of pain-related
processes.
We were interested in whether brain abnormalities

would progressively influence individuals as the result of
migraine attack history. To explore which brain regions
might relate to the course of disease, a correlation ana-
lysis was performed. The results showed that the average
ReHo value of the thalamus, brain stem, and temporal
pole were positively related to the disease duration. The
ReHo value of the ACC, insula, PCC and SOG were
negatively correlated with the history of MWoA. There-
fore, the ReHo increase in the thalamus, brain stem, and
temporal pole in MwoA patients may reflect a dynamic
compensation for the disorder signals from the brain,
whereas the decreased hemodynamic synchronization
in the ACC, insula, PCC, and SOG could be explained
by MwoA -related dysfunction. Additionally, we specu-
lated these ReHo changes might reflect not only as a
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consequence of repeated painful attacks in a pain
disorder, but also as indicators specific to migraine
without aura.
As we all know, the ACC, insula, and thalamus are the

key regions composed of the “pain matrix”. Recent
neuroimaging evidence supported that the ACC and
insula were the common “brain signature” structures in
chronic pain diseases, such as fibromyalgia [32], irritable
bowel syndrome [33], chronic tension type headache
[34], and migraine [16,35,36]. ACC has a close intercon-
nection with the insula, thalamus, prefrontal cortex, and
other subcortical structures, and is considered to be
implicated in both affective and cognitive-attentional
dimensions of pain and plays a deterministic role in pain
modulation and analgesia [37]. In the current study,
ACC demonstrated negative correlation with disease
duration, which was consistent with previous correlation
analysis reports separately on regional metabolism [35]
and average ReHo values [12] of the ACC. The insula is a
complex, multisensory integration area that is involved in
processing many aspects involved with the conscious
experience of pain such as affect, autonomic activity and
interoception. A recent study strongly suggested that if the
full pain experience involves the pain matrix network, a
part of the insula seems to play a leading role in the
triggering of this network and the resulting emergence of
the subjective pain experience [38]. Functional imaging
experiments have revealed that the insula is a major site
for emotional processing, and it also processes sensory-
discriminative aspects of pain perception [39]. Coghill
et al., reported the insula cortex plays reciprocal role in
pain, emotions and pain-related emotions, due to its ana-
tomic connections [40]. We found that the progressive
dysfunction of the insula showed a significant correlation
with disease history, and did not detect a significant rela-
tionship between the insula and headache degree or attack
frequency. The thalamus was also found to have a dysfunc-
tion in migraine patients in previous documents [41-43],
but few studies have evaluated the correlation between the
abnormality of the thalamus and clinical parameters. The
thalamus is the “relay center” of the brain, and it is
involved in the formation of the lateral and medial pain
system. The lateral nuclei of the thalamus deal with
discriminative sensory pain transmission, and the medial
nuclei of the thalamus are involved in emotional and
somatic responses to pain [44]. In the current study,
increased ReHo values of the thalamus were positively cor-
related with disease duration, suggesting that this cumula-
tive alteration was mainly due to migraine, and not only
the secondary effect of having migraine headaches. Our
results demonstrated that the ACC, insula, and thalamus
were not only related to central pain processing for
migraine without aura, but also involved in expressing the
relationship between brain dysfunction and disease history.
Moreover, several independent functional imaging
studies have reinforced the fact that the pathogenesis of
migraine is related to the dysfunction of the brain stem.
A series of positron emission tomographic (PET) studies
consistently observed an increase in regional cerebral
blood flow in the brain stem during migraine attacks
[41,45-47], and the brain stem was also found to be acti-
vated in migraine patients with some stimulus detected
by fMRI [48-50]. Dysfunction of the brain stem is invol-
ved in antinociception, extracerebral and intracerebral
vascular control and sensory gating provides an explan-
ation for many of the facets of migraine. In this study,
increased ReHo values in the brain stem were related
with disease duration during the resting-state facilitation
that the brain stem has a crucial role in migraine, and
may serve as an indicator to reflect the progress of
migraine.
PCC participates in the composition of the default

mode network (DMN), and it seldom detected signifi-
cant abnormal findings in migraine patients checked by
neuroimaging. It is not the traditional pain-processing
area, but recently, Loggia et al. reported that some DMN
subregions (such as the PCC) respond in a perception-
related manner to pain, suggesting closer linkage bet-
ween the DMN and pain processing than previously
thought [51]. Furthermore, the PCC is recognized that
subjects with cognitive impairment showed reduced
cerebral blood flow in the PCC, and some clinical evi-
dence indicated that migraine patients had deficits in
cognitive function relative to healthy controls [52-54].
Our findings of progressive ReHo changes in the PCC in
relation to increasing disease duration suggest that re-
peated migraine attacks over time may lead to resting-
state abnormalities of selective brain regions belonging
to pain perception and cognitive control. The temporal
pole was found to have an increase in the fMRI BOLD
response during the interictal period in migraineurs in
response to a thermal stimulus [11], and also showed
significantly higher activation during odor stimulation by
H2

15O-PET [55]. The role of the temporal pole in pain
processing is not well understood, but it is an associative
multisensory area and plays a role in assigning affective
tone to short-term memories relating to pain, which
may be related to reports of impaired memory in
migraine patients during the interictal period [11]. We
found the ReHo properties of the temporal pole were
positively correlated with the duration of disease, which
suggests that temporal pole excitability as sensitization
during both the resting-state and stimulation may
contribute to repeated migraine attack. Lesions in the
occipital lobe result in visual disturbance, memory defi-
cits and motion perception disorders. Occipital lobes
had bilateral hypoperfusion in a patient with spontan-
eous migraine without aura as detected by PET [56,57],
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and an fMRI study found that the occipital cortex
showed structural deficits in MWoA patients [13]. In
the current study, our results showed decreased ReHo
values in the SOG which were negatively correlated
with the disease duration. Therefore, we inferred that
the observed PCC, temporal pole and SOG dysfunc-
tion in MWoA patients may provide a potential
neurobiological mechanism for cognitive deficits in
migraineurs.
There are some limitations in the present study.

Firstly, disease duration was used to classify the MWoA
patients with ST and LT, not including the MWoA
patients with moderate-term disease duration (between
5 years and 10 years). Further studies need to recruit a
large number of MWoA patients and stratify the detailed
data, and give more evidence to strengthen our findings.
Secondly, in order to test the reproducibility of our
results and to verify the consequences of brain damage
in migraineurs, further neuroimaging investigations have
to quantify brain abnormalities in a longitudinal de-
sign. Lastly, we will plan to assess cerebral structural
changes in MwoA patients by using DTI, VBM, or
surface-based techniques in the future work, and
help us to better understand the pathophysiology of
migraine.

Conclusion
In conclusion, the current study employed the ReHo
method to investigate the difference in resting-state
properties between MWoA patients stratified with dif-
ferent disease duration and healthy controls, as well
as the correlation of abnormal cerebral activity in
MWoA patients and disease duration. Our findings of
progressive abnormal ReHo values in relation to in-
creasing disease duration suggest that migraine with-
out aura is a progressive central nervous disease, and
the length of the disease duration was one of the key
reasons to cause brain dysfunction in MwoA patients.
The repeated migraine attacks over time result in
resting-state abnormalities of selective brain regions
belonging to the pain processing and cognition. Our
results provided more scientific and sensitive neuro-
imaging markers for reflecting the disease duration of
migraine patients without aura, and helped to identify
indicators of predilection sites for possible progressive
brain damage in migraineurs. It is expected that these
findings may be advance the understanding of the
pathology of migraine without aura and helpful to the
diagnosis and therapy for MwoA patients. For ex-
ample, take the appropriate individual treatment
program depending on the different length of dur-
ation of disease, and increase some special assessment
in brain function for migraine patients with long
disease duration.
Additional files

Additioanl file 1: Comparison between MWoA patients with ST
disease duration and healthy controls.

Additional file 2: Comparison between MWoA patients with LT
disease duration and healthy controls.
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