
Introduction

Hemiplegic migraine represents one of the most recent
incomers in the growing list of neurological channelopathies.
In 1996, missense mutations in the neuronal P/Q type calci-
um channel  α1A subunit gene (CACNA1A) on chromosome
19 were shown to cause familial hemiplegic migraine (HM)
[1]. In addition, distinct mutations within CACNA1A were
shown to cause two other human autosomal dominant disor-
ders: episodic ataxia type 2 (EA2) and chronic spinocerebel-
lar ataxia type 6 (SCA6) [1, 2]. This paper presents the vari-
ous clinical patterns and molecular alterations observed in
familial as well as in sporadic hemiplegic migraine.

Clinical features

Familial hemiplegic migraine (HM) is an hereditary form of
migraine with aura characterized by the presence of a motor

weakness during the aura [3]. HM is the only migraine sub-
type for which a monogenic, autosomal dominant mode of
inheritance has been clearly established. Besides the famil-
ial forms, some sporadic cases have been reported.

Typical attacks include a unilateral motor deficit associat-
ed with paresthesias, speech disturbancies or visual signs [4,
5]. Most patients have a moderate hemiparesis. Bilateral sen-
sorimotor symptoms occur in about 25% of patients [6–9].
These aura symptoms last 10 minutes to a few hours and are
followed by a migraine headache. Aura and headache features
may be highly variable within a given patient or among
patients from a given family [6]. Severe episodes with pro-
longed aura (up to several days or weeks), consciousness
impairment ranging from confusion to profound coma, agita-
tion, fever and meningismus occur in about 40% of the patients
[6, 10–13]. A few patients may have seizures during a severe
episode. In addition, about 15% of the patients have migraine
with non-hemiplegic aura alternating with HM attacks and
34% have migraine without aura [6, 8, 10, 12, 14–16].

Triggering factors are reported by about two-thirds of
the patients, the most frequent being stress and minor head
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trauma [6, 9]. In several cases, a severe HM episode was
precipitated by injection of contrast enhancement products
during cerebral or extracerebral angiography [4]. Age at
onset is usually between 10 and 15 years, but ranges from 1
to 75 years [17]. Frequency of attacks varies from several
per week to only a few in the whole life, with an average of
3–4 per year. In general, the attack frequency decreases after
age 20–25 years.

In 20% of unselected families, some HM patients have
permanent cerebellar symptoms such as nystagmus and/or
mild to moderate ataxia. Ataxia may be diagnosed prior to
the first HM attack and progresses independently of the fre-
quency and/or severity of these attacks. In some patients,
progressive ataxia is the major clinical feature of the dis-
ease. Autonomous gait generally remains possible even after
years of evolution [9, 10, 15, 16, 18–22]. Other associated
neurological symptoms have been reported in a few HM
families or cases: essential tremor [22], Usher’s syndrome
and cataract [16], cognitive impairment [14] and mental
retardation [10, 22].

Diagnosis 

The diagnosis of HM is entirely dependent upon obtaining a
precise description of the transient neurological episodes
and a family history of similar attacks. The major diagnosis
problem concerns first, the severe attacks with coma and
prolonged aura which are often diagnosed as being menin-
goencephalitis and second, the sporadic cases.

No specific abnormality on neurological investigations
has been described. Cerebrospinal fluid during severe
attacks often shows an elevated white cell count (12–290
cells/mm3) [10]. During attacks, electroencephalography
(EEG) shows a diffuse slow wave activity predominating on
the hemisphere contralateral to the deficit, which may per-
sist several days or weeks after the attack [23]. Periodic
sharp waves [16], or dysrhythmia [12] have been rarely
reported. Cranial computed tomography (CT) or magnetic
resonance imaging (MRI) performed during a severe attack
may show aspects of hemispheric edema. Interictal imaging
is normal, except in some HM patients having permanent
nystagmus or ataxia, in whom a cerebellar atrophy predom-
inating on the anterior vermis may be observed [10, 18, 20].

Therapy

Due to the relative rarity of this condition, management of
HM is mostly based on what is known about treatment of

other forms of migraine with aura. Since the demonstration
that HM and EA2 were allelic conditions, acetazolamide has
been used to prevent HM attacks, with some good results
[24]. Symptomatic treatment of HM attacks aims to relieve
pain, nausea and vomiting. Vasoconstrictor agents should be
avoided, such as ergotamine, dihydroergotamine and trip-
tans. Recently, the use of intranasal ketamine was reported
to shorten HM attacks in some patients [25].

Genetic heterogeneity of HM

HM is genetically heterogeneous [19, 21, 26, 27]. The first
responsible gene, located on chromosome 19p13.1 [20], was
identified in 1996 as CACNA1A and encodes the α1A sub-
unit of P/Q-type voltage-gated calcium channels [1].
CACNA1A is involved, on the basis of linkage or mutation
screening data, in all 18 families with HM and progressive
cerebellar ataxia (HM/PCA) reported so far [19, 21, 28]. On
the contrary, pure HM has been linked to at least three dif-
ferent genes: CACNA1A [1, 19, 20], a second yet unidenti-
fied gene mapped on chromosome 1q [11, 27], and a third
gene still to be localized [27]. Moreover, an American group
found linkage to 1q31 in a large family, whereas linkage to
1q21-23 has been demonstrated in three French families.
Further analysis is needed to disclose whether chromosome
1q is the site of one or two HM genes.

Except for cerebellar ataxia which appears to be present
only in chromosome 19-linked families, few differences
have been found between families linked to different loci. In
a study comparing clinical features between 3 chromosome
19-linked families and 2 unlinked families, patients belong-
ing to the former group were more likely to have attacks
triggered by minor head trauma and to have severe attacks
with unconsciousness [9]. In another study comparing clin-
ical and genetic data between three HM family groups (10
chromosome 19-linked families, 3 chromosome 1-linked
families and 4 families unlinked to both loci), two major
genotype-phenotype correlations were observed [28]. First,
penetrance was much lower in chromosome 1-linked fami-
lies. Second, associated permanent cerebellar symptoms were
observed in 50% of chromosome 19-linked families and in
those families only. No significant difference was observed
between the three family groups with regard to the character-
istics of HM attacks, the occurrence of severe attacks, the
existence of other migraine subtypes and the disease course.
The incomplete penetrance of HM may account for some of
the apparent sporadic cases of HM. Finally, the clinical vari-
ability within a given family and the incomplete penetrance
suggest that genetic and environmental factors play a role in
the expression of the HM phenotype.
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CACNA1A and the α1A subunit of P/Q type voltage-gated
calcium channels

Mutations in the CACNA1A gene account for about 50% of
hemiplegic migraine cases, including all those with cerebel-
lar symptoms. Mutations in this same gene have been shown
to cause two other autosomal dominant conditions: episodic
ataxia type 2 (EA2) and spinocerebellar ataxia type 6
(SCA6). EA2 is responsible for paroxysmal attacks of gait
ataxia with limb incoordination, dysarthria and nystagmus
[29–31]. Acetazolamide responsiveness is a common fea-
ture. Between attacks, nystagmus and mild ataxia are often
noticed. SCA6 is a late-onset progressive neurological con-
dition responsible for gait and limb ataxia [2, 32–34].

CACNA1A encodes the main subunit of P/Q type neu-
ronal voltage-dependant calcium channel. These channels
are responsible for the specific influx of calcium into the
neuron in response to membrane depolarization [35, 36]. Six
functional subclasses of voltage-dependent calcium chan-
nels are defined based on electrophysiological and pharma-
cological criteria [37]. Two major classes are distinguished:
low-voltage activated (T type) and high-voltage activated
(L, N, P, Q and R) channels. Calcium channels are multi-
meric complexes containing a major transmembrane pore-
forming α1 subunit associated with smaller auxillary sub-
units (β, α2/δ and γ) [37, 38]. The α1 subunit, large
hydrophobic protein which forms the ionic pore, is respon-
sible for calcium and voltage sensitivity and the channel-
gating properties. At least 9 different genes encoding α1
subunits have been identified. These different subunits are
responsible for the electrophysiological and pharmacologi-
cal diversity  of calcium currents. 

All α1 subunits contain four homologous domains (I to
IV), each containing six putative α-helix membrane-spanning
segments (S1 to S6). The four domains are linked by intracy-
toplasmic loops and fold within the cellular membrane to
build the ionic pore. Small hydrophobic loops between each
S5 and S6 segments are called P-loops (P standing for pore)
because they line the inner part of the pore. The P-loops form
a specific and dynamic filter for calcium ions. The four S4
segments are responsible for voltage sensitivity.

The CACNA1A gene in humans is localized on chromo-
some 19p13. The 47 known exons span about 350 kb. The
9.8 kb RNA (including 7800 bp of coding sequence) is
almost exclusively expressed in central neurons: heavily in
the cerebellum [39–41] but also in the hippocampus, cortex,
olfactory bulb, thalamus, hypothalamus and brainstem. It is
also expressed in peripheral motoneurons. At the subcellu-
lar level, α1A subunits are particularly dense at presynaptic
terminals [42].

The α1A subunit, in association with auxilliary subunits,
is able to generate, mainly through alternative splicing, the

two different P- and Q-type calcium currents. P/Q type
channels are expressed in a variety of neurons where they
play an important role in the control of membrane
excitability, neurotransmitter release and gene expression
[36]. At the neuromuscular junction, they control acetyl-
choline release. P-type currents form 90% of all calcium
currents observed in Purkinje cells, whereas Q-type cur-
rents are important in cerebellar granular cells (35% of all
calcium currents), but also in hippocampal neurons where
their preeminant role in glutamatergic neuronal transmis-
sion has been established.

CACNA1A mutations and genetic screening

Thirteen CACNA1A mutations have been identified so far
in 25 families and two sporadic cases affected by HM [1,
24, 43–48]. All these mutations are missense mutations,
changing a single amino-acid in the whole protein. All are
located within exons coding for S4 to S6 segments.
T666M, a predominant substitution, was detected in 10 of
25 families and in one sporadic case. This genetic defect
was demonstrated to arise through recurrent mutation
events and to be specifically associated with the presence
of a permanent cerebellar ataxia [44]. Three other recurrent
mutations (R583Q, R1667W and I1811L) have been also
identified in HM with ataxia. A de novo mutation was
shown to cause a severe form of HM with ataxia in one
sporadic case [47]. Six of these identified mutations are
associated with pure HM [1, 49].

In EA2, 11 different CACNA1A mutations have been
identified in seven families and four sporadic cases [1,
50–52]. Ten of these mutations are predicted to lead to trun-
cated or aberrant α1A subunits. In addition, a missense
mutation was detected in a single family in which patients
suffered from both paroxysmal episodes indistinguishable
from those observed in EA2 and a rapidly progressive and
severe permanent ataxia [53].

SCA6 is caused by small expansions of a CAG repeat,
located within the 3’ end of CACNA1A and predicted to
code for a polyglutamine tract in three of the six known
human splice variants [2]. Surprisingly, CAG expansions
were identified in three families with paroxysmal and per-
manent progressive ataxia [32, 54].

Diagnostic genetic testing is now theoretically possible in
HM. However, mutations are located all over the coding
sequence of the gene.  Screening for the T666M substitution,
which is present in about 50% of families affected by HM and
cerebellar ataxia, is one possibility. New methods providing
time- and cost-effective mutation detection are needed for the
routine screening for CACNA1A mutations in HM.
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Genotype-phenotype correlation in HM due to CACNA1A
mutations

Both the pure form of HM and that associated with cerebellar
ataxia are caused by missense mutations in important func-
tional domains of the channel (segments S4 to S6 and P-
loops). However, the mechanisms by which a given mutation
causes cerebellar symptoms in addition to HM are unknown. 

One important issue is the high clinical variability
observed within given HM families having the same muta-
tion. This variability concerns both episodic symptoms
(hemiplegic migraine attacks) and permanent symptoms.
This profound variability suggests that factors other than the
sole CACNA1A mutation are important to produce the clin-
ical phenotype. Genetic or environmental factors may play
a role. With regards to allelic modifying factors, two studies
found no role of the length of the intragenic CAG repeat on
the severity of episodic as well as permanent symptoms in
HM with ataxia [44] and in EA2 [50].

Molecular aspects of functional disturbances

In order to understand the mechanisms leading from
CACNA1A mutations to the various observed phenotypes,
various approaches are currently used including electro-
physiological studies and analysis of mutant animals.

Altered calcium current kinetics

Seven of the CACNA1A mutations causing HM (R192Q,
R583Q, V714A, D715E, T666M, V1457L and I1811L) have
been investigated for their putative effects on α1A calcium
currents [55–57]. In these studies, calcium currents were
compared in cells expressing wild type and mutant
CACNA1A. All analyzed mutations altered the calcium cur-
rent kinetics. The changes mainly concerned the gating
properties including the time course of inactivation.

Animal models for CACNA1A disorders: the tottering and
leaner mutant mice

Two recessive mutations in the murine homolog of
CACNA1A have been identified to be responsible for the
tottering and leaner phenotypes [58].

Tottering mutant mice have paroxysmal and permanent
neurological symptoms. They have absence epilepsy, rare
motor seizures, and moderate cerebellar ataxia without
cerebellar atrophy. Electron microscopy disclosed some
shrunken Purkinje cells. In addition, tottering mice have an
abnormal synaptogenesis of noradrenergic fibers in the
locus coeruleus and an abnormal persistent expression of
tyrosine hydroxylase (TH) in Purkinje cells (TH is normal-
ly expressed from the third to the fifth weeks) [59]. The tot-
tering mutation (C1802T; Pro601Leu) [58] is located a few
bases from the T666M mutation causing HM with ataxia.
Tottering mice display abnormal acetylcholine release at
neuromuscular junctions, a function which is regulated by
P/Q-type calcium channels [60].

The leaner phenotype is also transmitted as an autoso-
mal recessive trait. Like tottering mice, leaner mice have
absence epileptic seizures and persistant TH expression in
Purkinje cells. They develop severe cerebellar ataxia and
their life span is reduced. Histological examination showed
a dramatic loss of Purkinje cells and granular and Golgi
neurons. The leaner mutation alters a CACNA1A splice site
and induces the production of two aberrant transcripts  [58].
It was recently shown by whole-cell recording of Purkinje
neurons from leaner mice, that P-type currents, normally
representing 85% of all calcium currents, were reduced by
65% [61].

CACNA1A and hemiplegic migraine: from genotype to
phenotype

To date, our knowledge is not sufficient to propose detailed
hypotheses. Channels formed by α1A subunits have specif-
ic functions in specific neurons, of which only some could
be modified by a given mutation. These functions could be
the development of specific neuronal populations, the con-
trol of specific gene expression or the neurotransmission in
some peculiar neuronal pathways. This hypothesis is under-
lined by the remarkable neuronal phenotypic restriction in
the tottering and leaner mice. This restriction, which may
appear to contradict the large expression of α1A subunits
throughout central and peripheral neurons, favors the
hypothesis  of a specialization of the various α1A channels.
HM-causing CACNA1A mutations alter the gating proper-
ties of calcium channels involved in neurotransmitter
release. Tottering mice exhibit abnormal neurotransmitter
release at the neuromuscular junction. These observations
suggest that hemiplegic migraine may be caused, at least in
part, by abnormal neurotransmitter release.
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