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Abstract The c-AMP-responsive element binding pro-

tein (CREB) and its phosphorylated product (P-CREB) are

nuclear proteins expressed after stimulation of pain-pro-

ducing areas of the spinal cord. There is evidence indi-

cating that central sensitization within dorsal horn neurons

is dependent on P-CREB transcriptional regulation. The

objectives of the study were to investigate the expression of

P-CREB in cells in rat trigeminal nucleus caudalis after

noxious stimulation and to determine whether pre-treat-

ment with specific anti-migraine agents modulate this

expression. CREB and P-CREB labelling was investigated

within the trigeminal caudalis by immunohistochemistry

after capsaicin stimulation. Subsequently, the effect of i.v.

pre-treatment with either sumatriptan (n = 5), or nara-

triptan (n = 7) on P-CREB expression was studied. Five

animals pre-treated with i.v. normal saline were served as

controls. CREB and P-CREB labelling was robust in all

animal groups within Sp5C. Both naratriptan and suma-

triptan decreased P-CREB expression (p = 0.0003 and

0.0013) within the Sp5C. Triptans attenuate activation of

CREB within the central parts of the trigeminal system,

thereby leading to potential inhibition of central sensiti-

zation. P-CREB may serve as a new marker for post-syn-

aptic neuronal activation within Sp5C in animal models

relevant to migraine.
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Introduction

The c-AMP-responsive element binding protein (CREB) is

a transcription factor that regulates the expression of genes

important for adaptive neuronal responses [1] as well as

complex functions such as learning and memory [2]. Upon

extracellular stimuli multiple kinases, such as protein

kinase A, protein kinase C and casein kinase II, phos-

phorylate CREB at serine 133 (P-CREB) leading to acti-

vation of immediate early gene c-fos [3, 4]. Fos protein

expression can then be used as a marker of neuronal acti-

vation within brainstem and spinal nociceptive pathways

[5]. CREB also target other genes, such as brain-derived

neurotrophic factor (BDNF), that is significantly involved

in depression, serving as potential marker for treatment

together with P-CREB [6].

Like c-fos, CREB signalling is also involved in pain

processing, e.g. at the level of spinal cord in a study of

tissue injury-induced inflammation and hyperalgesia [7].

Likewise, at the brainstem level, in vitro evidence suggests

that P-CREB within the rat trigeminal ganglion is regulated

by calcitonin gene-related peptide (CGRP) induced by

activation of either the adenosine A1 receptor or the P2X3

receptor [8, 9]. In addition, it has been proposed that

inhibition of CREB prior to its nuclear translocation may

prevent the slowly developing onset of sensitization within
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the brainstem [9], as other studies indicate that central

sensitization within the dorsal root neurons is mediated via

P-CREB-mediated transcriptional regulation [10].

Allodynia has been recognized in migraine since the

nineteenth century [11], with clinic- [12] and population-

[13] based studies showing that it is seen in about two-

thirds of patients. Allodynia is a clinical reflection of

sensitization, and both central and peripheral sensitization

are important insofar as they both influence attacks and

perhaps disease progression [14, 15]. Sensitization of

peripheral trigeminovascular neurons that innervate the

meninges may be crucial for the development of throbbing

in the initial phase of migraine following by sensitization

of central trigeminal neurons within the trigeminal nucleus

caudalis [16]. In previous work, sumatriptan did not change

P-CREB induced by forskolin in cultured neurons taken

from adult rat trigeminal ganglions, nor inhibit CGRP

release at the same model, as may expected [8], although

the role of CGRP on sensitization is unclear [17]. An

interesting question remains as to whether triptans modu-

late phosphorylation of CREB within neurons of the tri-

geminal nucleus caudalis in vivo. We, therefore, mapped

P-CREB expression within rat trigeminal nucleus caudalis

after capsaicin stimulation of the trigeminovascular system,

and determined the effect of triptans, serotonin 5-HT1B/1D

receptor agonists. We show capsaicin stimulation of the

trigeminal system activates P-CREB within trigeminal

nucleus caudalis and both sumatriptan and naratriptan

inhibit induced P-CREB at doses relevant to clinical

practice.

Methods

Male Sprague–Dawley rats (240–300 g) were housed

under diurnal lighting and allowed food and water ad libi-

tum. All experiments were conducted consistent with the

UK Home Office Animals (Scientific Procedures) Act

(1986).

CREB and P-CREB mapping

with immunohistochemistry

Eight rats were anaesthetized with pentobarbital i.p.

(60 mg/kg) and the femoral vein was cannulated for

physiology and drug treatments. Ten minutes later two rats

were killed (intact animals), whereas a craniotomy was

performed in the remaining six animals. After craniotomy

0.1, 1 or 10 lM capsaicin in a cotton ball was directly

applied onto the right middle meningeal artery (MMA) for

5 min (n = 2 for each capsaicin dose). Ten minutes after

the end of stimulation period, the animals were killed by

pentobarbital (100 mg/kg, i.v.) and perfused with PBS

followed by paraformaldehyde. Brainstems were removed

and kept in 30% sucrose until sectioning in a freezing

microtome (5 lm) followed by immunohistochemistry

(avidin–biotin procedure).

Several dilutions of P-CREB and CREB antibodies (Cell

Signalling Technology, cat# 9191 and 9192, respectively)

were tested to establish 1:100 as optimal. Biotinylated

sheep anti-rabbit serum (vector) served as a secondary

antibody (1:600). Tissues from two non-stimulated animals

were used as controls. The brainstems from two other intact

animals, where only anaesthesia followed by killing was

performed after 30 min, were processed for immunohisto-

chemistry to study the effect of surgery on CREB and

P-CREB expression at a comparable timing. Two addi-

tional animals were treated as above following exactly the

same procedure but killed 2 h after capsaicin stimulation

(1 lM). Their brainstems were prepared for fos protein

immunohistochemistry at the level of the trigeminal

nucleus caudalis [18] to determine if the stimulation was

sufficient to activate the trigeminal neurons. Although we

refer to the labelling as CREB and P-CREB we cannot

exclude cross-reactivity of the antibody so that CREB-like

and P-CREB-like may be better terms.

Pharmacological studies

The effect of i.v. pre-treatment with either sumatriptan

1 mg kg-1 (n = 5), or naratriptan 1 mg kg-1 (n = 7) on

P-CREB expression within Sp5C was studied following the

above described procedure. Five animals pre-treated with

i.v. normal saline given at the same volume as the drugs

served as controls.

Physiology

Physiological monitoring was carried out in all animals,

including arterial pressure (MABP), heart rate (HR) and

rectal temperature.

CREB and P-CREB immunoreactive cell counting

(image analysis method)

Images were acquired using a Zeiss Axiolab microscope

(Carl Zeiss GmbH Jena, Germany) with a mechanical

stage, fitted with a Sony-iris CCD videocamera (Sony

Corp. Tokyo, Japan). The video camera was connected to a

PC (Pentium IV-based) loaded with appropriate image

analysis software (Sigma Scan Pro 5.0, Science, Germany).

Slides were examined at a magnification 940. More spe-

cifically, in each case the cellular area of the trigeminal

nucleus caudalis was selected according to the atlas of

Paxinos and Watson [19] and then the number of P-CREB

immunostaining cells were calculated via a semiautomatic
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procedure using the above-mentioned image analysis

software. Prototypes of positively stained neurons were

carefully selected by an expert (DDM) and then labelled

cells were counted within the pre-defined areas by the

software automatically. Counting was performed by an

investigator blind to drug treatment (NK). Twelve coronal

sections of the trigeminal nucleus caudalis were selected

for counting from each animal; four consecutive slides at

the obex level, four at level -2 mm and other four at the

level -6 mm (C2) [20]. The mean number was calculated

and used for statistics for each animal.

Results

Blood pressure and heart rate (not shown) did not differ

between animals, except that both the animals treated with

high capsaicin dose (10 lM) died.

CREB and P-CREB mapping

with immunohistochemistry

In the intact animals CREB but not P-CREB induction

was detected bilaterally within all parts of trigeminal

nucleus caudalis (data not shown). After craniotomy,

CREB was detected bilaterally within almost all the

brainstem nuclei including the trigeminal nucleus cauda-

lis, solitary tract, area postrema, lateral reticular nucleus,

inferior olive nucleus, within all the laminae. P-CREB

was not detected within the trigeminal nucleus caudalis.

At the dose of 1 lM of capsaicin CREB labelling

increased in all the above-mentioned nuclei and P-CREB

labelling was found as well within the ipsilateral side of

trigeminal nucleus caudalis laminae I and II (5–30 cells

per section within the obex and the rostal parts down to

C2 level). Neurons in lamina X were labelled as well,

whereas only a few contralateral neurons were labelled at

laminae I, II. Capsaicin 0.1 lM induced weak P-CREB

labelling in cells within laminae I and II (1–5 neurons per

section) (Fig. 1). Fos protein-labelled neurons were

observed within Sp5C laminae I and II 2 h after 1 lmol

capsaicin stimulation. Fos labelling was robust and clear.

After capsaicin stimulation (0.1 and 1 lM) one animal

died in each dose (mortality rate 10%). Therefore, the

dose of 1 lM of capsaicin was selected for consecutive

drug testing.

Pharmacological studies

Pre-treatment with i.v. sumatriptan and naratriptan at a

dose of 1 mg kg-1 significantly decreased capsaicin-

induced P-CREB expression within laminae I and II

of trigeminal nucleus caudalis compared to vehicle

pre-treated animals (Figs. 2, 3). Two treated animals died

(mortality rate 10.5%). The physiological data were not

different between three groups (data not shown).

0.1µmol capsaicin x10 

1µmol capsaicin                                       x10

10µmol capsaicin           x10 

Fig. 1 Micro-photographs show P-CREB expression within the rat

trigeminal nucleus caudalis (Sp5C) after capsaicin stimulation (obex).

Capsaicin applied onto the middle meningeal artery (MMA) for 5 min

at three different doses (1, 0.1 and 10 lM, n = 2 for each dose).

P-CREB-labelled neurons are shown (arrows) within the rat trigem-

inal nucleus caudalis (obex) 10 min after the end of stimulation.

Avidin–biotin immunohistochemistry
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Discussion

We show here that stimulation of the peripheral parts of the

rat trigeminovascular system, first-order trigeminal neu-

rons, by capsaicin-induced CREB phosphorylation within

the second-order neurons at the brainstem in the trigeminal

nucleus caudalis. To our knowledge, this is the first in vivo

study mapping the CREB and P-CREB expression within

the trigeminal nucleus caudalis after noxious stimulus.

Furthermore, the anti-migraine drugs sumatriptan and

naratriptan prevented brainstem CREB activation.

Methodological limitations

Preabsorption controls for anti-CREB and anti-P-CREB

were not performed, to prove their specificity to the protein

using the exact immunohistochemical protocol except for

the addition of the immunizing peptide. However, we fol-

lowed the manufacturer’s immunohistochemical protocols

and the P-CREB labelling distribution within the pain-

producing areas of the trigeminal system supports the

specificity of the antibodies used. Several time points for

CREB and P-CREB expression were not tested to see if the

10-min window was optimal for drug testing. We followed

suggestions based on previous experiments [7, 21] showing

that this time window, 10 min after stimulation of MMA to

observe phosphorylation of CREB within trigeminal

nucleus caudalis, was appropriate. The mortality rate was

slightly high (10%) but acceptable. Finally, a TRPV1

antagonist could be used to show a reverse effect. We

tested only one dose of triptans, not several to show a

possible dose–response related effect. Also the effect of

triptans to inhibit other stimuli (mechanical distension or

thermal stimuli or other chemical stimuli) was not studied.

CREB and P-CREB mapping within the trigeminal

system

Capsaicin 1 lmol applied on the MMA-induced P-CREB

immunohistochemistry within the ipsilateral brain stem

trigeminal nucleus caudalis, as it has been shown with c-fos

[5]. P-CREB within Sp5C was relatively pain-specific

because of the particular distribution within the laminae I

and II, that was clear for counting and with good signal to

noise for drug testing. Physiological monitoring showed

that the microsurgical procedure and the capsaicin stimu-

lation were tolerated well by the pentobarbital anaesthe-

tized rats. Previous in vitro experiments showed P-CREB

expression within the rat trigeminal ganglion neurons

induced by forskolin [8]. Recently, activation of CREB

30
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vehicle            sumatriptan naratriptan

Fig. 2 Treatment with both sumatriptan and naratriptan attenuates

CREB activation within trigeminal nucleus caudalis. Sumatriptan

(n = 5) and naratriptan (n = 7) at a dose of 1 mg kg-1 i.v.

significantly decreased capsaicin (1 lmol) induced P-CREB expres-

sion within trigeminal nucleus caudalis compared to vehicle treated

animals (n = 5)

A B

Dug vehicle + capsaicin
x10 Sumatriptan+ capsaicin                x10  

Fig. 3 Micro-photographs show P-CREB expression within the rat

trigeminal nucleus caudalis (Sp5C) after capsaicin stimulation and

sumatriptan treatment (obex). Normal saline (n = 5) or sumatriptan

1 mg kg-1 (n = 5) was i.v. administered in rats and 10 min later

1 lM capsaicin applied onto the middle meningeal artery (stimulation

lasted for 5 mins). Ten minutes after the end of stimulation the

animals were killed and preceded for immunohistochemistry (avidin–

biotin procedure). Panel A sample from a vehicle ? capsaicin-treated

animal. Panel B sample from a sumatriptan ? capsaicin-treated

(1 mg kg-1) animal. P-CREB labelled neurons are shown (arrows)

within the rat trigeminal nucleus caudalis (obex)

414 J Headache Pain (2011) 12:411–417

123



within mouse cultured trigeminal ganglion neurons was

seen after treatment with CGRP via Ca2?-dependent

mechanisms [9]. We had the opportunity to look for CREB

and P-CREB expression within the ipsilateral trigeminal

ganglia after capsaicin stimulation; we did not observe

P-CREB. Apparently the CREB cascade exists in rat tri-

geminal ganglion cells, although how to induce it in vivo

still remains unclear and needs further investigation.

Triptan effects on P-CREB within trigeminal nucleus

caudalis

Both sumatriptan and naratriptan prevented capsaicin-

induced P-CREB within the trigeminal nucleus caudalis

as previously shown with capsaicin-induced c-fos [22, 23]

indicating that the P-CREB approach yields similar data.

At the first neuron level, however, in vitro studies failed

to show an effect of sumatriptan on forskolin-induced

CREB activation [8], suggesting that sumatriptan triggers

the suppressive transcriptional cascade only within the

central parts of the trigeminal system, not in the periph-

ery. No such model for c-fos exists to compare to, since

c-fos is not expressed within trigeminal ganglion cells [5].

To better explore the effect of triptans on P-CREB, two

drugs with somewhat different pharmacological properties

have been tested: the hydrophilic sumatriptan, which does

not penetrate the blood brain barrier in normal circum-

stances, and the tenfold more lipophilic naratriptan [24].

Because both drugs share almost similar affinity to 5-HT1

receptors, we used the same doses for both drugs. The

clinically relevant doses are different although this may

be simply a matter of absorption. Both triptans attenuated

P-CREB regardless of their differences. It is important,

however, to understand the molecular mechanism of the

action of triptans on neurons. Triptans not only increase

intracellular Ca2? leading in inhibition of CGRP gene

transcription [25, 26], but also down regulate gene tran-

scription generally within trigeminal nucleus caudalis

cells by blocking CREB phosphorylation and c-fos

expression, resulting in depression of brainstem nocicep-

tive neurons, as has been shown using electrophysiolog-

ical methods [27, 28]. These findings may partially

explain the effect of triptans on the central sensitization

process seen in migraine.

Central sensitization and P-CREB

It has been speculated that triptans can successfully abort

migraine as long as central sensitization still depends on

incoming signals from the periphery, but not after central

sensitization becomes self-sufficient [29]. Since this

hypothesis still lacks good documentation, it would be

interesting to test the effect of triptans in vivo within the

trigeminal ganglion neurons. However, only electrophysi-

ological studies can be performed, and these techniques are

limited to short lasting neuronal alterations. One of the

aims of this study was to explore an in vivo approach to

investigate the longer time course effects of triptans within

both trigeminal ganglion and trigeminal nucleus caudalis

neurons, such as effects on gene transcription. Unfortu-

nately trigeminal ganglion cells did not show sufficient

labelling to explore this question further. Yet, the findings

of our study may serve as vehicle to better understand the

effect of triptans on slowly developing central sensitization

within trigeminal nucleus caudalis.

Gene transcription is crucial for long lasting neuronal

changes triggered by several extracellular signals. In the

case of CREB, multiple molecules or proteins, such as

CGRP [9], lead to its phosphorylation, via activation of

several kinases [1, 30–32]. After phosphorylation CREB

activates other immediate early genes like c-fos, molecules

important for synaptic function like brain-derived neuro-

trophic factor and neuronal nitric oxide [33], which are all

involved in pain transmission. Thus, selective blocking of

CREB activation before its nuclear translocation would be

important in inhibiting pain signalling acutely and also in

blocking the sensitization cascade triggered by P-CREB,

therefore reducing escalation of pain signalling [9]. In other

words this would be pivotal for reducing the escalation/

persistence of pain due to central sensitization, such as in

migraine. In addition, P-CREB may also serve as marker of

neuronal presynaptic activation within the trigeminovas-

cular system in animal models of migraine biology, like fos

protein.

C-fos and P-CREB as markers for trigeminal caudalis

activation in animal models of migraine biology

C-fos encodes a nuclear protein that regulates the tran-

scription of other target genes and of its one promoter. Its

detection within the brainstem and spinal cord neurons is

the best studied technique to map the postsynaptic noci-

ceptive pathways in numerous cephalic pain models [5, 18,

34]. In the field of migraine research fos protein immu-

noreactivity offers a method to identify subpopulations of

neurons activated in response to noxious stimuli and

identify related nociceptive pathways [5]. The majority of

studies have employed this technique to map neuronal

activation not only throughout the trigeminovascular sys-

tem [35–39], but also higher structures involved in the

ascending and descending modulatory control of pain [6,

40–42], thus, greatly enhancing our understanding of the

pathophysiology of migraine. As with other models of the

components of migraine the use of fos expression has

certain limitations [43]. The major one being the model can

only be as good as the stimulus since it is the stimulus that
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drives the expression of fos protein. Several intracranial

structures have been stimulated chemically or electrically

to induce fos within trigeminal nucleus caudalis, including

the meninges [18, 20, 22, 23], trigeminal ganglion [44], the

superior sagittal sinus [35] and middle meningeal artery

[45]. It seems that the activation of specific structures of

the trigeminovascular system (e.g. the superior sagittal

sinus) leads to more clinically relevant conclusions [35,

46]. It is noteworthy that induction of fos to quantifiable

levels requires a strong consistent stimulation that is often

not physiological [47, 48]. It must also be remembered that

c-fos is not expressed in all neurons as with the dorsal root

ganglion cells [34], thus, lack of fos protein expression

does not equate to lack of neuronal activity. Technical

difficulties in inducing c-fos expression within trigeminal

nucleus caudalis are also important [49]. One final limita-

tion of the model is seen via direct activation of the an-

tinociceptive descending pathways, which elicits c-fos

expression in spinal neurons even in the absence of any

nociceptive input [50].

P-CREB on the other hand displays several advantages

over c-fos as a neuronal marker of post-synaptic activation

within trigeminal nucleus caudalis. So far, activation of

CREB within the trigeminal nucleus caudalis, or trigeminal

ganglion in vitro, has been seen only after specific acti-

vation of nociceptive neurons, thus P-CREB within lami-

nae I and II seems to be a direct effect of the noxious

stimulus used. In addition, the time window needed for

phosphorylation of CREB is much shorter, up to 10 min,

compared to 120 min needed for c-fos expression, leading

potentially to lower animal mortality rates. Although only

stimulation of middle meningeal artery has been used,

theoretically all the other parts of the peripheral trigeminal

system can be used to induce P-CREB. The fact that

P-CREB expression has been detected within trigeminal

ganglion, although only in vitro, raises new possibilities for

pharmaocological studies within both the peripheral and

central parts of the trigeminal system. Further investigation

is required though to induce and map P-CREB in trigem-

inal ganglion cells in vivo.

Conclusions

P-CREB is a transcriptional factor involved in sensitization

of nociceptive cells. Noxious stimulation of peripheral

parts of the trigeminal system induces P-CREB within

trigeminal nucleus caudalis. Triptans inhibit this activation.

Thus, triptans might prevent central sensitization by

attenuating P-CREB-mediated transcriptional pathways. In

addition, P-CREB may serve as a new marker for post-

synaptic neuronal activation within trigeminal nucleus

caudalis in animal models of migraine biology.
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